
Snakemake
Phil Ashton, PGI Advanced Training - KEMRI Wellcome, April 2022



Why are we going to talk to you 
about workflow managers?



Advantages of workflow managers

- Each job/task can run within its own environment/container
- Failures handled elegantly - and re-starting.
- Portable - can send it to collaborator and it should work (?)
- Scalable - same code can run on your laptop or an HPC with minor changes
- Efficient - parallelisable jobs run in parallel.



Workflow managers

● Snakemake
● Nextflow
● Cromwell
● Galaxy
● Ruffus
● BPipe
● …

Choosing which one to use is a 
trade-off between learning curve, 
feature richness, and ease of use.



One way to think about Snakemake scripts

1. What is the final thing you want out of this pipeline?
2. What is the process that will give you that thing?
3. What are the inputs for that process?
4. Where do those inputs come from?

Input files



One way to think about Snakemake scripts

Assembly

Trimmed reads

Raw reads

Process: Assembly
Input: Trimmed Reads
Output: assembly.fasta

Process: read trimming
Input: raw reads

Output: trimmed reads Given as files

Process: Gather assemblies
Input: assembly.fasta =



Snakemake

● Based on Python & Make
● Split your workflow into separate “rules”

○ One rule per process normally

● Rules have:
○ A rule name
○ Input files
○ Output files
○ A command to turn the input into the output



An example Snakemake script

rule bwa_map:

input: "data/genome.fa", "data/samples/A.fastq"

output: "mapped_reads/A.bam"

shell: "bwa mem {input} | samtools view -Sb - > {output}"



Running Snakemake scripts

If the contents of the previous slide is saved as “my_mapping_pipeline.smk” then to 
run it we would do:

`snakemake -s my_mapping_pipeline.smk`

Alternatively you can save the contents in a file called `Snakefile` and then just 
run `snakemake` in the directory containing `Snakefile` and it will run the script.



A generalised Snakemake script

rule bwa_map:

input: "data/genome.fa", "data/samples/{sample}.fastq"

output: "mapped_reads/{sample}.bam"

shell: "bwa mem {input} | samtools view -Sb - > {output}"

● Snakemake uses “named wildcards”, in this case `{sample}`. 
● In this case snakemake would find all the files matching the pattern 

`data/samples/{sample}.fastq` and run the rule `bwa_map` on them
● The `{sample}` wildcard will “propagate” through to the output, so the output 

bam name will match the input fastq name.



A more useful generalised Snakemake script

samples = [‘sample1’, ‘sample2’]

rule bwa_map:

input: ref_genome = "data/genome.fa", fastqs = 
expand("data/samples/{sample}.fastq", sample = samples)

output: "mapped_reads/{sample}.bam"

shell: "bwa mem {input} | samtools view -Sb - > {output}"

The `expand` function lets you 
give a “todo list” to a rule.



A two-step snakemake workflow
rule bbduk:

input: r1 = '{root_dir}/{sample}_1.fastq.gz',r2 = '{root_dir}/{sample}_2.fastq.gz'

output: r1 = '{root_dir}/{sample}_bbduk_1.fq.gz',r2 = '{root_dir}/{sample}_bbduk_2.fq.gz'

shell: 'bbduk.sh in={input.r1} in2={input.r2} out={output.r1} out2={output.r2}'

rule shovill:

input: r1 = rules.bbduk.output.r1, r2 = rules.bbduk.output.r2

output: final = '{root_dir}/{sample}/shovill_bbduk/contigs.fa',

shell: 'shovill --outdir {root_dir}/{wildcards.sample}/shovill -R1 {input.r1} -R2 
{input.r2}'



A three-step snakemake workflow

rule all:

input: expand('{root_dir}/{sample}/shovill_bbduk/contigs.fa', sample = todo_list, root_dir = 
root_dir)

rule bbduk:

input: r1 = '{root_dir}/{sample}_1.fastq.gz',r2 = '{root_dir}/{sample}_2.fastq.gz'

output: r1 = '{root_dir}/{sample}_bbduk_1.fq.gz',r2 = '{root_dir}/{sample}_bbduk_2.fq.gz'

shell: 'bbduk.sh in={input.r1} in2={input.r2} out={output.r1} out2={output.r2}'

rule shovill:

input: r1 = rules.bbduk.output.r1, r2 = rules.bbduk.output.r2

output: final = '{root_dir}/{sample}/shovill_bbduk/contigs.fa',

shell: 'shovill --outdir {root_dir}/{wildcards.sample}/shovill -R1 {input.r1} -R2 {input.r2}'



Directed acyclic graphs (DAGs)

When snakemake runs, it converts the snakefile into a 
directed acyclic graph.



Practical exercise 1 - basic and advanced snakemake

1. Basics: An example workflow — Snakemake 7.3.2 documentation
2. Advanced: Decorating the example workflow — Snakemake 7.3.3 

documentation

https://snakemake.readthedocs.io/en/stable/tutorial/basics.html
https://snakemake.readthedocs.io/en/stable/tutorial/advanced.html


Using conda with snakemake

rule bwa_map:

input: ref_genome = "data/genome.fa", fastqs = 

expand("data/samples/{sample}.fastq", sample = samples)

output: "mapped_reads/{sample}.bam"

conda: "../../envs/bwa.yaml"

shell: "bwa mem {input} | samtools view -Sb - > {output}"

A yaml file defining the conda packages required to run 
this rule.



Practical exercise 2 - conda integration

● Modify your script from the basic conda exercise to use conda environments 
for each rule

a. Distribution and Reproducibility — Snakemake 7.3.5 documentation

https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html


Using snakemake with HPC

● Submitting/managing jobs on an HPC can be a hassle
● Especially when jobs depend on each other
● Snakemake makes it much easier to use an HPC
● If you don’t have an HPC, snakemake can also be configured to use e.g. 

Amazon Web Services.



Using snakemake with HPC

$ cat ~/.config/snakemake/salmonella/config.yaml

__default__:
cluster: sbatch
cpus-per-task: 1
mem-per-cpu: 4000
jobs: 100

bbduk:
cpus-per-task: 8

shovill:
cpus-per-task: 8
mem-per-cpu: 6000

snakemake -s ~/scripts/snakemake/salmonella_workflow.smk \
--cluster-config ~/.config/snakemake/salmonella_slurm/config.yaml \
--cluster "sbatch --cpus-per-task={cluster.cpus-per-task} \
--mem-per-cpu={cluster.mem-per-cpu}" \
--jobs 1000



Practical exercise 3 - using snakemake on HPC

● Modify your snakemake script from the basic workflow to execute on the HPC
○ More information - Cluster Execution — Snakemake 7.3.2 documentation
○ You will need to write a config file like on the previous slide, for this example you can just set a 

sensible `__default__` for all rules.
○ Then execute using the snakemake command from previous slide as a template.

https://snakemake.readthedocs.io/en/stable/executing/cluster.html


Acknowledgements & further reading

Anna Price, Cardiff/CLIMB - https://www.youtube.com/watch?v=qORviM_ELdk

Reproducible, scalable, and shareable analysis pipelines with bioinformatics 
workflow managers | Nature Methods

Snakemake - Reproducible and Scalable Bioinformatic Workflows

https://snakemake.readthedocs.io/en/stable/tutorial/basics.html

https://www.youtube.com/watch?v=qORviM_ELdk
https://www.nature.com/articles/s41592-021-01254-9
https://www.youtube.com/watch?v=9HxTURMP_Uc
https://snakemake.readthedocs.io/en/stable/tutorial/basics.html

