
Perspective
https://doi.org/10.1038/s41592-021-01254-9

1Genome Institute of Singapore, Singapore, Singapore. 2ImmunoScape, Singapore, Singapore. ✉e-mail: gokej@gis.a-star.edu.sg

Increased throughput, new technologies, and higher sample num-
bers have contributed to the production of massive amounts of
biological data1,2. While some of the largest data generators are

national and international consortia, even research by individual
teams now frequently uses high-throughput technology and sizable
bioinformatics analysis. The analysis of biological data is driven
by the development of an extensive array of open-source software
tools3,4. Most of these tools carry out a single specialized step, which
when chained together enables the creation of complex analysis
workflows that process and analyze the increasing amount of bio-
logical data. However, with complex chains of steps, variability in
operating systems and computational resources, and ambiguities
with tool versioning and documentation5–7, reproducibility of analy-
sis workflows has become a key issue in computational biology8,9.

In order to minimize the number of manual steps that are
required to execute an analysis workflow, computational pipelines
automatically chain together multiple tools (Fig. 1a). Historically,
computational pipelines were developed using custom scripts or
Make files10,11 (Fig. 1b). These traditional pipelines greatly simplify
the recurrent analysis of data. However, traditional pipelines are
usually highly coupled to their local compute infrastructure; can-
not resume a failed run; lack sufficient documentation, parameter
tracking, and tool versioning; and require manual installation when
running on another device, making them difficult to share and
maintain, and making produced results often impossible to repro-
duce11–13. Even when a user of a traditional pipeline installs relevant
software and dependencies, as well as obtaining the exact software
versions for each tool, analysis results can still differ5,6.

Data-heavy fields, such as banking, the automotive industry, and
technology start-ups, have successfully used workflow managers
to handle complex data analytics workflows (for example, https://
www.pachyderm.com/use-cases/, https://github.com/spotify/luigi,
https://airbnb.io/projects/airflow/, https://github.com/Netflix/
metaflow, https://github.com/uber/cadence). Workflow managers
provide a framework for the creation, execution, and monitoring of
pipelines. In recent years, a number of workflow managers have been
specifically designed for biomedical data11,14, directly addressing

the need of computational analysis workflows in research and
health care. Bioinformatics workflow managers offer integration
with containers, package managers, and cloud computing, while
providing automatic resource management15. Implementing a pipe-
line with a workflow manager can simplify pipeline development,
maintenance, and use, while enabling portability and improving
reproducibility (Fig. 1c).

Workflow managers provide a powerful tool for pipeline devel-
opment, yet many different frameworks exist that differ in their ease
of use, ability for customization, documentation, and requirements
of prior programming knowledge11. Here, we introduce the advan-
tages of workflow managers compared with traditional pipelines
and compare some of the existing approaches. We review pipeline
repositories that provide curated collections of pipelines to avoid
re-implementing best-practice analysis workflows. We aim to pro-
vide a guide and overview to facilitate the use of workflow managers
for computational and noncomputational users, while highlighting
the concepts that we believe will become essential for data-driven
research and applications in high-throughput biology.

Data provenance
In computational biology, one of the major challenges to enabling
reproducibility is that any change in software versions, parameters,
or reference annotation versions can alter the results16–20. Data prov-
enance describes this trail of methods, versions, and arguments that
were used to generate a set of files21.

Workflow managers automate the process of input parameter
and software tool version tracking for computational pipelines.
They provide the option to generate execution reports with detailed
information, such as input parameters to the pipeline; the execu-
tion environment; the software version of the workflow manager
and tools used; resource usage information, including execution
time and CPU usage; and parameters for each individual tool and
a visualization of the pipeline steps. While execution reports are
file-specific, the workflow itself can be publicly archived and made
citable by obtaining a version-specific digital object identifier (DOI)
through Zenodo22,23. This provides a high level of documentation on

Reproducible, scalable, and shareable analysis
pipelines with bioinformatics workflow managers
Laura Wratten   1, Andreas Wilm2 and Jonathan Göke   1 ✉

The rapid growth of high-throughput technologies has transformed biomedical research. With the increasing amount and
complexity of data, scalability and reproducibility have become essential not just for experiments, but also for computational
analysis. However, transforming data into information involves running a large number of tools, optimizing parameters, and
integrating dynamically changing reference data. Workflow managers were developed in response to such challenges. They
simplify pipeline development, optimize resource usage, handle software installation and versions, and run on different com-
pute platforms, enabling workflow portability and sharing. In this Perspective, we highlight key features of workflow managers,
compare commonly used approaches for bioinformatics workflows, and provide a guide for computational and noncomputa-
tional users. We outline community-curated pipeline initiatives that enable novice and experienced users to perform complex,
best-practice analyses without having to manually assemble workflows. In sum, we illustrate how workflow managers contrib-
ute to making computational analysis in biomedical research shareable, scalable, and reproducible.

Nature Methods | VOL 18 | October 2021 | 1161–1168 | www.nature.com/naturemethods 1161

mailto:gokej@gis.a-star.edu.sg
https://www.pachyderm.com/use-cases/
https://www.pachyderm.com/use-cases/
https://github.com/spotify/luigi
https://airbnb.io/projects/airflow/
https://github.com/Netflix/metaflow
https://github.com/Netflix/metaflow
https://github.com/uber/cadence
http://orcid.org/0000-0003-4470-5785
http://orcid.org/0000-0002-0825-4991
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-021-01254-9&domain=pdf
http://www.nature.com/naturemethods

Perspective NaTure MeTHods

how files are processed, enabling transparency, code sharing, and
long-term reproducibility through data provenance.

Portability
Pipeline reports and DOIs ensure that a workflow can be run with
identical parameters and software versions. However, executing the
same pipeline code on another machine or operating system can
still be impossible, for example, owing to missing dependencies or
incompatible software versions. In contrast, a workflow that is por-
table can be executed with the same functionality across different
platforms (provided that minimum hardware requirements, such as
CPU and memory, are met for the workflow).

Workflow managers utilize two technologies to automate the
software installation process and ensure portability across different
platforms: package managers and containerization software9.

Package managers automate the process of installing and con-
figuring software, enabling a user to obtain all tools and depen-
dencies required to execute a pipeline with a single command,
eliminating the need to locate and manually install tools with dis-
tinct installation requirements24,25. Examples of package manag-
ers are Homebrew (https://brew.sh/) for MacOS and Linux, and
Conda (https://conda.io), which provides an isolated environment
for pipeline execution in addition to efficiently installing pipeline
dependencies26. In particular, Bioconda (https://bioconda.github.
io/), a Conda channel specializing in bioinformatics, has contrib-
uted to the availability and ease of installation of bioinformatics
tools. Bioconda provides over 8,000 maintained and curated Conda
recipes for bioinformatics software27. Package managers enable
platform-independent software installation, largely eliminating the
need for pipeline developers to write their own platform-specific
recipes for dependency installation.

Containers, on the other hand, are a lightweight, configurable
virtualization technology that allows packaging and distribution of
pipelines and their corresponding dependencies in a self-contained
and platform-independent manner28. Commonly used soft-
ware for containerization in bioinformatics includes Docker

(https://www.docker.com/) and Singularity29. The repository
Dockstore aggregates containerized bioinformatics tools and work-
flows into a searchable repository30, while the BioContainers31
community initiative provides prebuilt containers to be used with
Docker and Singularity. BioContainers was specifically designed to
host bioinformatics software, transforming the way bioinformatics
tools are installed and used, as well as making containerized soft-
ware accessible to noncomputational researchers.

Workflow managers seamlessly integrate containerization soft-
ware and package managers, enabling users to install dependencies
and run a pipeline without the requirement for preinstalled local
versions. Some workflow managers enable this option with a single
command-line flag, thus ensuring cross-platform portability for
scientific workflows. This approach to portability also increases
reproducibility across different compute platforms, as factors such
as the choice of operating system have been shown to influence
analysis results12,32.

Scalability
The rapid rise of high-throughput technologies has greatly increased
the scale and complexity of data that are routinely generated and
analyzed. Being able to run the analysis of biological data at any scale
in a fast and resource- and cost-efficient way has therefore become a
key requirement for computational pipelines33,34. Scalability of pipe-
lines encompasses two aspects: efficient resource management and
the ability to handle any size and quantity of input data35,36.

Resource management is particularly important for bioinfor-
matics workflows that consist of multiple steps that each have dif-
ferent CPU and memory requirements. Most workflow managers
efficiently utilize resources through parallelization of the differ-
ent steps37. Workflow managers implement parallelization in a
number of ways, including static scheduling, job-queue sched-
uling, and adaptive scheduling38. The choice of implementation
of workflow scheduling as well as whether parallelization occurs
on the data, task, or pipeline level influences both workflow per-
formance and the way users write workflows for the system39.

Table 1 | Overview of workflow managers for bioinformatics (top, editable version; bottom, image version)

Tool Class Ease of
usea

Expressivenessb Portabilityc Scalabilityd Learning
resourcese

Pipeline
initiativesf

Galaxy Graphical ●●● ●○○ ●●● ●●● ●●● ●●○
KNIME Graphical ●●● ●○○ ○○○ ●●◐ ●●● ●●○

Nextflow DSL ●●○ ●●● ●●● ●●● ●●● ●●●

Snakemake DSL ●●○ ●●● ●●◐ ●●● ●●○ ●●●

GenPipes DSL ●●○ ●●● ●●○ ●●○ ●●○ ●●○

bPipe DSL ●●○ ●●● ●●○ ●●◐ ●●○ ●○○

Pachyderm DSL ●●○ ●●● ●○○ ●●○ ●●● ○○○

SciPipe Library ●●○ ●●● ○○○ ○○○ ●●○ ○○○

Luigi Library ●●○ ●●● ●○○ ●●◐ ●●○ ○○○

Cromwell +
WDL

Execution + workflow
specification

●○○ ●●○ ●●● ●●◐ ●●○ ●●○

cwltool + CWL Execution + workflow
specification

●○○ ●●○ ●●◐ ○○○ ●●● ●●○

Toil + CWL/
WDL/Python

Execution + workflow
specification

●○○ ●●● ●◐○ ●●● ●●○ ●●○

Please refer to Supplementary Table 1 for details. This information is based on online documentation and manuscripts and may not be reflective of the current state of the projects. Scores for Galaxy
are based on the graphical user interface. aEase of use: graphical interface with execution environment (score of 3), programming interface with in-built execution environment (score of 2), separated
development and execution environment (score of 1). bExpressiveness: based on an existing programming language (3) or a new language or restricted vocabulary (2), primary interaction with graphical
user interface (1). cPortability: integration with three or more container and package manager platforms (3), two platforms are supported (2), one platform is supported (1). dScalability: considers cloud
support, scheduler and orchestration tool integration, and executor support. Please refer to Supplementary Table 1. eLearning resources: official tutorials, forums, and events (3), tutorials and forums (2),
tutorials or forums (1). fPipelines initiatives: community and curated (3), community or curated (2), not community or curated (1).

Nature Methods | VOL 18 | October 2021 | 1161–1168 | www.nature.com/naturemethods1162

https://brew.sh/
https://conda.io
https://bioconda.github.io/
https://bioconda.github.io/
https://www.docker.com/
http://www.nature.com/naturemethods

PerspectiveNaTure MeTHods

By dynamically scheduling independent tasks during execution
of the pipeline, unused resources can be utilized without affecting
the most resource-intensive steps. This process enables the effec-
tive handling of large datasets and minimizes bottlenecks that
increase running time. Workflow managers provide a high degree
of flexibility to control resource utilization, as memory and
compute requirements can be specified for each step or for the
entire workflow40.

Even with optimal resource management, the maximum
scalability of traditional pipelines is limited by the local com-
pute infrastructure. Workflow managers achieve scalability
beyond the local infrastructure by providing in-built support for
high-performance computing environments and cloud computing
services41–44. Workflow managers often provide simple options to
execute the same pipeline on different compute infrastructures,
with direct support for major cloud compute providers and popu-
lar scheduling software45. In addition, some workflow manag-
ers can use container orchestration systems, such as Kubernetes
(https://kubernetes.io/) and Docker Swarm (https://docs.docker.
com/engine/swarm/), to automatically manage the scheduling and
deployment of containers, further enabling the effective utilization
of available resources.

The optimized resource management and support for major exe-
cution infrastructures ensure that pipelines written with workflow
managers can be scaled for the efficient analysis of small and large
datasets.

Re-entrancy
With the rise of pay-as-you-use cloud computing and the use
of pipelines for clinical and industrial applications, cost and
time-to-result have become important factors in pipeline execu-
tion42,46,47. Computational workflows often have a large number of
steps that can be resource intensive. When the execution of a tradi-
tional pipeline is disrupted owing to errors or manual intervention,
it has to be restarted from the first step, thereby recomputing already
computed results and thus wasting computational resources.

Workflow managers can handle such events by enabling
re-entrancy. Re-entrancy allows users to run a pipeline from its last
successfully executed step, rather than from the beginning, in the
case of a disruption. Re-entrancy also minimizes the need for recal-
culation of frequent data-processing steps such as saving reference
genomes and index creation. To achieve this, workflow managers
use caching to save intermediate results and data files and compare
this with the expected output to generate only necessary files48.
Workflow managers vary in their implementation of re-entrancy,
which may result in differences in storage overheads because of
intermediate file generation. Re-entrancy saves significant time and
compute resources and is a key advantage of workflow managers49.

A practical guide to workflow management tools for
pipeline development
There are over 150 workflow managers currently in use and under
development (https://github.com/common-workflow-language/
common-workflow-language/wiki/Existing-Workflow-systems;
https://github.com/pditommaso/awesome-pipeline).

One of the main distinctions between workflow managers is the
trade-off between ease of use, flexibility, and feature richness. While
some workflow managers enable the implementation of pipelines
with simple graphical user interfaces, others require minimal or
more advanced programming knowledge. The increased level of
expressiveness and abstraction enables the implementation of more
flexible and powerful pipelines, often required by bioinformatics
core units or collaborative consortia. Additional criteria that distin-
guish workflow managers are the availability of learning resources,
access to preimplemented pipelines, and differences in portabil-
ity and scalability (Table 1 and Supplementary Table 1). While
we believe that a comparison of workflow managers can provide
a useful overview, criteria such as ease of use and expressiveness
are based on definitions that capture only one aspect and as such
are subjective and will differ for each user. Many more workflow
managers exist, and it is important to note that this is a simplified
representation that does not capture most of the aspects and fea-
tures that are often dynamically evolving and as such should not
be interpreted as a ranking. Criteria such as personal preferences
of programming languages, access to a local community or sup-
port within an institute, uptake by the global community, long-term
support, and active development can often be equally or even more
important to consider.

Graphical workflow managers: point-and-click pipeline
development
Graphical workflow managers support user interaction through a
graphical user interface. They provide a point-and-click interface
for users to drag and drop tools into workflows and chain them
together, enabling the creation of complex computational pipelines
without programming experience.

Examples of graphical workflow managers are Galaxy, a
web-based platform for bioinformatics workflows50, and KNIME,
a graphical tool for building machine-learning and data science
workflows51,52. Galaxy features over 8,000 tools (https://toolshed.
g2.bx.psu.edu/)53 and an abundance of learning resources (https://
galaxyproject.org/learn/; https://training.galaxyproject.org/)54.
Galaxy is actively maintained by a core team and an active commu-
nity, with a large number of pipelines being published55. The Galaxy
project provides public infrastructure to run workflows without
incurring costs as well as functionality for specialized data analy-
sis and visualization that go beyond the functionality of most other

Table 2 | Overview of bioinformatics pipeline projects

Pipeline initiative Tool Curateda Communityb Citablec Pipelinesd

nf-core Nextflow ✓ ✓ ✓ 27

snakePipes Snakemake ✓ ✗ ✓ 9

Snakemake-Workflows Snakemake ✓ ✓ ✓ 7

GenPipes GenPipes ✓ ✗ ✓ 12

Galaxy Community Galaxy ✗ ✓ ✗ >1,000

BioWDL WDL ✓ ✗ ✓ 17

WARP WDL ✓ ✗ ✗ 8

KNIME Hub KNIME ✗ ✓ ✗ >1,000
aCurated: peer review or best practice, ability to ask questions of developers, and extensive documentation with clear contribution guidelines and testing. bCommunity: not hosted on institute-specific
infrastructure and developers from various institutes. cCitable: provides guidelines for pipeline citation. dPipelines: number of released pipelines (not counting drafts or prereleases).

Nature Methods | VOL 18 | October 2021 | 1161–1168 | www.nature.com/naturemethods 1163

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/pditommaso/awesome-pipeline
https://toolshed.g2.bx.psu.edu/
https://toolshed.g2.bx.psu.edu/
https://galaxyproject.org/learn/
https://galaxyproject.org/learn/
https://training.galaxyproject.org/
http://www.nature.com/naturemethods

Perspective NaTure MeTHods

workflow managers56. These aspects make Galaxy a powerful choice
for users with or without computational expertise who would like to
assemble and run custom bioinformatics workflows.

Domain-specific language workflow managers: rapid and
flexible development
A domain-specific language (DSL) is a programming language
that is developed to meet a specific need within a particular
domain57. Workflow managers that are implemented as DSLs are
developed to enable the rapid deployment of reproducible, robust,
and portable computational pipelines and support features spe-
cifically for this purpose. Hence, there are many shared features
across workflow managers that implement their own DSL, includ-
ing the ability to incorporate existing tools or pipelines written in
other scripting languages, making it easy to port tools over and
minimizing refactoring.

Nextflow6 and Snakemake58 are popular examples of DSL-based
workflow managers that are designed for bioinformaticians famil-
iar with programming. Nextflow, which uses an extension of the
Groovy programming language, breaks down each step of a pipe-
line into modular components and connects these through channels
that determine pipeline execution (dataflow paradigm)6. In contrast,
Snakemake’s language is similar to that of standard Python syntax
and works backwards by requesting output files and defining each

step required to produce them (similar to Make)59. Additional exam-
ples of DSL-based workflow managers are GenPipes, a Python-based
DSL tool for genomics workflows60, bPipe, which aims for syntactic
simplicity using a Groovy-based DSL61, and Pachyderm, which is
used in the banking and automotive industries and also has applica-
tions in biotechnology62. All of these workflow managers provide
a robust and programmatic interface to create pipelines, support
containers to ensure portability, and automatically handle resources
to optimize scalability (Table 1). A unique feature of Snakemake
and Nextflow is the ability to create reusable modules for steps of
a workflow. The use of such modules further reduces the com-
plexity of code, increases the readability and maintainability, and
makes it easy to extend, reuse, or replace individual steps of analysis
workflows (https://snakemake.readthedocs.io/en/stable/snakefiles/
modularization.html; https://www.nextflow.io/blog/2020/dsl2-is-here.
html). Snakemake also enables between-workflow caching to avoid
recomputation of shared steps between pipelines (https://snakemake.
readthedocs.io/en/stable/executing/caching.html).

DSL-based workflow managers are well-suited for researchers or
teams with prior programming experience. While they provide a
powerful framework for rapid pipeline development and minimize
the amount of refactoring for pre-existing tools and scripts, the ini-
tial learning curve can be steeper than that for graphical workflow
managers. To aid this initial learning curve, popular DSL-based

Analysis workflow Traditional pipeline Workflow managera b c

Portability

Scalability

Automatic resource
management

Transcript expression quantification

Fastq
Reference
sequence

Grch38
Ensembl 91

Step 1: quality control

fastQC

Step 2: index creation

Salmon

Step 3: quantification

Salmon
Salmon v.1.3.0

-I A

Salmon v.1.3.0
-i

fastQC v.0.11.9

Output 1

QC report

Input data

Transcript
expression

Output 2
Output 1 Output 2 Output 1

Re-entrancy Data provenance

Output 2
Execution

report

Step 3

Step 2

Step 1

Input data

LocalRe-entrance
checkpoints

Execution

Pipeline code

Requirements Platform-specific Requirements

Execution

Re-entrance
checkpoints

Local HPC Cloud

Input data

Containerized
steps

Step 1 Step 2

Step 3

Platform-independent

Workflow manager

Pipeline code

fastQC! Salmon!

Output data Software, versions, parameters Fixed version, local compute environment

Fig. 1 | Overview of bioinformatics analysis workflows using an example of transcript expression quantification. a, Analysis workflow describing the input
data (gray), software, software and reference data versions and parameters (green), and output files (orange). b, Traditional pipeline implementations
are coupled to the local compute environment and are sensitive to changes in software or data versions. c, Implementation of the analysis workflow using
a workflow manager decouples the code from the execution environment, enabling portability and more meaningful code sharing. Workflow managers
provide options for scalability and optimize resource usage through re-entrance checkpoints and parallelization of steps. Containerized software makes
local software installation requirements unnecessary. Execution reports can track parameters and versions, providing transparency and data provenance.

Nature Methods | VOL 18 | October 2021 | 1161–1168 | www.nature.com/naturemethods1164

https://snakemake.readthedocs.io/en/stable/snakefiles/modularization.html
https://snakemake.readthedocs.io/en/stable/snakefiles/modularization.html
https://www.nextflow.io/blog/2020/dsl2-is-here.html
https://www.nextflow.io/blog/2020/dsl2-is-here.html
https://snakemake.readthedocs.io/en/stable/executing/caching.html
https://snakemake.readthedocs.io/en/stable/executing/caching.html
http://www.nature.com/naturemethods

PerspectiveNaTure MeTHods

workflow managers provide an abundance of learning resources
and direct access to community support. Among the DSL-based
workflow managers, Nextflow and Snakemake have the largest
active community with a large number of published ready-to-use
pipelines (for example, refs. 63–66), making them a popular choice for
computational users and teams that want to have maximum flex-
ibility to design custom pipelines.

Programming-library-based workflow managers
While graphical and DSL workflow managers are currently
the most widely used frameworks for bioinformatics pipe-
lines, there are some other types of workflow managers, such as
programming-library-based tools. Programming-library-based
workflow managers implement their pipeline management systems
as a programming library for an existing, popular programming
language. SciPipe67, a library for the Go programming language,
and Luigi (https://github.com/spotify/luigi), a Python package
developed by Spotify, are examples of programming-library-based
workflow managers. They leverage existing tooling, text editor
support, and other programming libraries in the language67. A
programming-library-based workflow manager benefits research-
ers who are already familiar with a programming language and wish
to minimize the learning curve of a DSL tool. Compared with other
workflow managers, programming-library-based frameworks cur-
rently support fewer features and are less adopted for bioinformatics
applications (Table 1).

Workflow specifications: portability across workflow
systems
Workflow specifications provide a set of formalized rules for defin-
ing computational pipelines. This allows the separation of the
pipeline definition from the execution environment, thereby add-
ing another layer of abstraction. Workflow specifications enable
the definition of pipelines that can be executed across workflow
managers or execution environments that support the standard21.
One example of a workflow specification is the Common Workflow
Language (CWL) (https://www.commonwl.org)68,69. CWL defines
pipelines using YAML (http://yaml.org/) or JavaScript Object
Notation (JSON) (http://www.json.org/) formats—human-readable,
data-serialization languages. In contrast, the Workflow Description
Language (WDL, pronounced ‘widdle’) (https://openwdl.org/)
defines its own human-readable definition language. Execution
engines such as Cromwell70 (https://github.com/broadinstitute/
cromwell) and the CWL reference implementation cwltool (https://
github.com/common-workflow-language/cwltool) have been
developed specifically to run CWL and WDL pipelines, with some
existing workflow managers, such as Toil, incorporating CWL and
WDL support71,72. Some DSL-based workflow managers such as
Snakemake implement CWL export functionality (https://snakemake.
readthedocs.io/en/stable/executing/interoperability.html)58.

Workflow specifications such as CWL and WDL are suited
to researchers who want to decouple their pipelines from a spe-
cific workflow manager to enable a higher degree of portability.
Workflow specifications make it easy to define pipelines: they are
easy to read and provide the highest level of portability and the most
flexible framework for sharing73. However, owing to the additional
abstraction from separating workflow definition and execution
environment, they might appear less convenient than some of the
existing workflow managers.

Ready-to-use pipelines provide easy access to complex
workflows
The advantages of using workflow managers have contributed to a
growing number of publications that provide individual workflow
implementations to ensure reproducibility of computational find-
ings. However, most computational pipelines that are developed

remain unpublished, with the vast majority likely being reimple-
mentations of similar workflows by different teams or institutions
that perform the same analysis74. A notable example of this is the
Genome Analysis Toolkit Best Practises pipeline75, which was devel-
oped to standardize genomic analysis and now has over 200 imple-
mentations on GitHub (https://github.com/search?q=GATK+pipel
ine&type=Repositories).

To address this, pipeline collections have been developed for all
major bioinformatics workflow managers, enabling the easy shar-
ing of pipelines while often dramatically simplifying their execu-
tion (Table 2). One of the most extensive collections is hosted by
the Galaxy Community project (https://usegalaxy.org/workflows/
list_published; https://usegalaxy.eu/workflows/list_published). The
Galaxy Community enables anyone to share and execute pipelines,
facilitating transparency and reproducibility of scientific workflows.
Similarly, KNIME Hub (https://hub.knime.com/) hosts community
pipelines for KNIME workflows. However, community pipelines
are not required to be peer-reviewed, documented, or maintained.

In contrast, curated pipeline collections have undergone testing
and peer review. Such pipelines are often required to have excellent
documentation with usage, examples and a description of results, and
they are required to be actively maintained by developers. Projects
such as snakePipes76, GenPipes60, BioWDL (https://biowdl.github.
io/) and WARP (https://broadinstitute.github.io/warp/) provide col-
lections of curated pipelines implemented in Snakemake, GenPipes,
and WDL, respectively. While these projects ensure that pipelines
are maintained and adhere to best practices, they are often smaller
and more focused than community-developed pipeline initiatives.

The nf-core project aims to bridge this gap by hosting
community-curated pipelines77. nf-core provides a framework to
host Nextflow pipelines, and it requires specific best practices and
sets standards for pipeline implementations to guarantee their
maintenance, documentation, portability, scalability, and repro-
ducibility. Among the curated pipeline initiatives, nf-core currently
has the largest number of contributors, pipelines, and individual
pipeline publications. Snakemake-Workflows is a GitHub reposi-
tory featuring best-practice, manually reviewed Snakemake work-
flows with continuous integration testing (https://github.com/
snakemake-workflows), while the IWC initiative aims to provide a
collection of community-contributed best-practice workflows for
Galaxy (https://github.com/galaxyproject/iwc/).

All curated pipeline initiatives enable citability of pipelines
and thereby reproducibility of computational analysis78. While
snakePipes and GenPipes provide a central reference for the pipe-
line project, nf-core and bioWDL enable the citation of individual
pipelines, often with Zenodo DOIs that identify specific release ver-
sions (https://zenodo.org/). Curated pipeline projects eliminate the
need to redevelop existing pipelines, and they enable researchers
without computational experience to use best practices for bioin-
formatics workflows without the initial learning curve, bringing the
power of workflow managers to a much broader audience.

Conclusion
As the need for reproducibility in computational analysis contin-
ues to grow, bioinformatics workflow managers have become a
key technology. Workflow managers simplify the implementation
of robust and complex analysis while providing additional features
that help to optimize resource management and reproducibility. Yet,
even for noncomputational users, workflow managers might prove
to be transformative. Easy-to-use graphical workflow managers,
such as Galaxy, and ready-to-use pipeline repositories, like nf-core,
enable the execution of complex analysis without programming
experience53,77.

Reproducibility is a major factor for the development of analysis
pipelines and can in theory be achieved with well-written custom
pipelines. However, workflow managers go beyond the minimal

Nature Methods | VOL 18 | October 2021 | 1161–1168 | www.nature.com/naturemethods 1165

https://github.com/spotify/luigi
https://www.commonwl.org
http://yaml.org/
http://www.json.org/
https://openwdl.org/
https://github.com/broadinstitute/cromwell
https://github.com/broadinstitute/cromwell
https://github.com/common-workflow-language/cwltool
https://github.com/common-workflow-language/cwltool
https://snakemake.readthedocs.io/en/stable/executing/interoperability.html
https://snakemake.readthedocs.io/en/stable/executing/interoperability.html
https://github.com/search?q=GATK+pipeline&type=Repositories
https://github.com/search?q=GATK+pipeline&type=Repositories
https://usegalaxy.org/workflows/list_published
https://usegalaxy.org/workflows/list_published
https://usegalaxy.eu/workflows/list_published
https://hub.knime.com/
https://biowdl.github.io/
https://biowdl.github.io/
https://broadinstitute.github.io/warp/
https://github.com/snakemake-workflows
https://github.com/snakemake-workflows
https://github.com/galaxyproject/iwc/
https://zenodo.org/
http://www.nature.com/naturemethods

Perspective NaTure MeTHods

requirements for reproducibility. By improving data provenance,
readability, and portability, they increase transparency, enable
long-term sustainability of analysis workflows58, and aid in achiev-
ing FAIR (findable, accessible, interoperable, and reusable) com-
putational analysis22,23. In particular, the ability to collaboratively
develop and share pipelines has led to one of the largest transforma-
tions brought by workflow managers. Computational methods are
now frequently accompanied with a workflow, core units and bioin-
formatics teams can make their pipelines available, and international
consortia rely on workflow managers for massive data processing.

Community-developed pipelines have been a key contribution
toward the increased sharing of code for analysis workflows79, with
curated code repositories enabling the use of best-practice pipelines
while providing a template that can be adopted to capture the diver-
sity of tools that often exists. While the use of curated best-practice
pipelines ensures robustness, many different best practices might
exist for the analysis of biological data. In order to maintain and
demonstrate the high standards of public pipelines, benchmark-
ing studies will be needed80. While most existing benchmarking
studies focus on individual aspects of workflows, benchmarking
studies that cover not just individual methods, but also complete
workflows, will be essential to evaluate the increasing number of
ready-to-use pipelines81–83.

Future directions
While features and use-cases are currently distinguished by the class
of workflow manager, such distinctions will become less clear as
workflow manager projects continue to grow and evolve. DSL work-
flow managers have already introduced graphical user interfaces to
deploy and monitor pipelines in the cloud, workflow specifications
provide tools for closer integration with existing programming lan-
guages, and powerful features and a large community make graphical
workflow managers attractive to experienced computational pipe-
line and methods developers. At the same time, workflow reposito-
ries such as WorkflowHub.eu or Dockstore30, which originated from
the complex analysis requirements of large cancer consortia84, host
pipelines for graphical, DSL, and workflow-specification languages,
further removing barriers. With a growing number of different
workflow managers that support standardized approaches, the per-
formance of the workflow managers themselves will become more
relevant. Although benchmarking for scientific software is already
common, systematic and quantitative evaluation of the robustness,
memory, and storage requirements for different workflow managers
will provide further guidance and directions for future developments.

Most bioinformatics software, including workflow managers, is
developed as academic open-source projects. While this ecosystem
is powerful in providing new solutions, reproducibility of computa-
tional analysis workflows requires long-term maintenance85, code
documentation86, and support for underlying bioinformatics soft-
ware87,88. However, maintaining open-source projects over a long
period of time is a major effort4. The importance of long-term soft-
ware maintenance is increasingly appreciated: dedicated funding for
essential open-source projects has been made accessible89 (https://
chanzuckerberg.com/), and publicly funded solutions for long-term
archiving of data and code are available90. By addressing some of the
major challenges faced with complex biomedical data processing,
workflow managers have already become an essential tool for com-
putational and noncomputational biologists. Combined with initia-
tives that support and fund best practices for software development
and maintenance, standardization, and evaluation, they provide a
powerful framework and long-lasting impact to increase the qual-
ity and sustainability of code for bioinformatics analysis workflows.

Code availability
Minimal example workflows and links to documentation are available
under https://github.com/GoekeLab/bioinformatics-workflows.

Received: 20 October 2020; Accepted: 29 July 2021;
Published online: 23 September 2021

References
	1.	 Stephens, Z. D. et al. Big data: astronomical or genomical? PLoS Biol. 13,

e1002195 (2015).
	2.	 Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age:

ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17,
333–351 (2016).

	3.	 Dozmorov, M. G. GitHub statistics as a measure of the impact of open-source
bioinformatics software. Front. Bioeng. Biotechnol. 6, 198 (2018).

	4.	 Nowogrodzki, A. How to support open-source software and stay sane. Nature
571, 133–134 (2019).

	5.	 Mangul, S. et al. Challenges and recommendations to improve the
installability and archival stability of omics computational tools. PLoS Biol.
17, e3000333 (2019).

	6.	 Di Tommaso, P. et al. Nextflow enables reproducible computational
workflows. Nat. Biotechnol. 35, 316–319 (2017).

	7.	 Tiwari, K. et al. Reproducibility in systems biology modelling. Mol. Syst. Biol.
17, e9982 (2021).

	8.	 Botvinik-Nezer, R. et al. Variability in the analysis of a single neuroimaging
dataset by many teams. Nature 582, 84–88 (2020).

	9.	 Grüning, B. et al. Practical computational reproducibility in the life sciences.
Cell Syst. 6, 631–635 (2018).

	10.	van Vliet, M. Seven quick tips for analysis scripts in neuroimaging.
PLoS Comput. Biol. 16, e1007358 (2020).

	11.	Leipzig, J. A review of bioinformatic pipeline frameworks. Brief. Bioinform.
18, 530–536 (2017).

	12.	Gronenschild, E. H. B. M. et al. The effects of FreeSurfer version, workstation
type, and Macintosh operating system version on anatomical volume and
cortical thickness measurements. PLoS ONE 7, e38234 (2012).

	13.	Stodden, V., Seiler, J. & Ma, Z. An empirical analysis of journal policy
effectiveness for computational reproducibility. Proc. Natl Acad. Sci. USA 115,
2584–2589 (2018).

	14.	Reiter, T. et al. Streamlining data-intensive biology with workflow systems.
Gigascience 10, giaa140 (2021).

	15.	Perkel, J. M. Workflow systems turn raw data into scientific knowledge.
Nature 573, 149–150 (2019).

	16.	Love, M. I. et al. Tximeta: reference sequence checksums for provenance
identification in RNA-seq. PLoS Comput. Biol. 16, e1007664 (2020).

	17.	Simoneau, J. & Scott, M. S. In silico analysis of RNA-seq requires a
more complete description of methodology. Nat. Rev. Mol. Cell Biol. 20,
451–452 (2019).

	18.	Simoneau, J., Dumontier, S., Gosselin, R. & Scott, M. S. Current RNA-seq
methodology reporting limits reproducibility. Brief. Bioinform. 22,
140–145 (2019).

	19.	Simoneau, J., Gosselin, R. & Scott, M. S. Factorial study of the RNA-seq
computational workflow identifies biases as technical gene signatures.
NAR Genom. Bioinform. 2, lqaa043 (2020).

	20.	Kim, Y.-M., Poline, J.-B. & Dumas, G. Experimenting with reproducibility: a
case study of robustness in bioinformatics. Gigascience 7, giv077 (2018).

	21.	Kanwal, S., Khan, F. Z., Lonie, A. & Sinnott, R. O. Investigating
reproducibility and tracking provenance—a genomic workflow case study.
BMC Bioinformatics 18, 337 (2017).

	22.	Goble, C. et al. FAIR Computational Workflows. Data Intell. 2,
108–121 (2020).

	23.	Lamprecht, A.-L. et al. Towards FAIR principles for research software.
Data Sci. 3, 37–59 (2019).

	24.	Abate, P., Di Cosmo, R., Treinen, R. & Zacchiroli, S. A modular package
manager architecture. Inf. Softw. Technol. 55, 459–474 (2013).

	25.	Decan, A., Mens, T. & Grosjean, P. An empirical comparison of dependency
network evolution in seven software packaging ecosystems. Empir. Softw. Eng.
24, 381–416 (2019).

	26.	Gruening, B. et al. Recommendations for the packaging and containerizing of
bioinformatics software. F1000Res. 7, J-742 (2018).

	27.	Grüning, B. et al. Bioconda: sustainable and comprehensive software
distribution for the life sciences. Nat. Methods 15, 475–476 (2018).

	28.	Silver, A. Software simplified. Nature 546, 173–174 (2017).
	29.	Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: scientific containers for

mobility of compute. PLoS ONE 12, e0177459 (2017).
	30.	O’Connor, B. D. et al. The Dockstore: enabling modular, community-

focused sharing of Docker-based genomics tools and workflows. F1000Res. 6,
52 (2017).

	31.	da Veiga Leprevost, F. et al. BioContainers: an open-source and
community-driven framework for software standardization. Bioinformatics 33,
2580–2582 (2017).

	32.	Beaulieu-Jones, B. K. & Greene, C. S. Reproducibility of computational
workflows is automated using continuous analysis. Nat. Biotechnol. 35,
342–346 (2017).

Nature Methods | VOL 18 | October 2021 | 1161–1168 | www.nature.com/naturemethods1166

https://chanzuckerberg.com/
https://chanzuckerberg.com/
https://github.com/GoekeLab/bioinformatics-workflows
http://www.nature.com/naturemethods

PerspectiveNaTure MeTHods

	33.	Black, A., MacCannell, D. R., Sibley, T. R. & Bedford, T. Ten
recommendations for supporting open pathogen genomic analysis in public
health. Nat. Med. 26, 832–841 (2020).

	34.	Krumm, N. & Hoffman, N. Practical estimation of cloud storage costs for
clinical genomic data. Pract. Lab. Med. 21, e00168 (2020).

	35.	Yang, A., Troup, M. & Ho, J. W. K. Scalability and validation of big data
bioinformatics software. Comput. Struct. Biotechnol. J. 15, 379–386 (2017).

	36.	Krissaane, I. et al. Scalability and cost-effectiveness analysis of whole
genome-wide association studies on Google Cloud Platform and Amazon
Web Services. J. Am. Med. Inform. Assoc. 27, 1425–1430 (2020).

	37.	Larsonneur, E. et al. Evaluating workflow management systems: a
nioinformatics use case. in 2018 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM) 2773–2775 (IEEE, 2018).

	38.	Bux, M. & Leser, U. Parallelization in scientific workflow management
systems. Preprint at https://arxiv.org/abs/1303.7195 (2013).

	39.	Belcastro, L., Marozzo, F. & Talia, D. Programming models and systems for
big data analysis. Int. J. Parallel Emergent Distrib. Syst. 34, 632–652 (2019).

	40.	Silva, V. et al. Raw data queries during data-intensive parallel workflow
execution. Future Gener. Comput. Syst. 75, 402–422 (2017).

	41.	Grossman, R. L. Data lakes, clouds, and commons: a review of platforms for
analyzing and sharing genomic data. Trends Genet. 35, 223–234 (2019).

	42.	Langmead, B. & Nellore, A. Cloud computing for genomic data analysis and
collaboration. Nat. Rev. Genet. 19, 325 (2018).

	43.	Lau, J. W. et al. The Cancer Genomics Cloud: collaborative, reproducible,
and democratized—a new paradigm in large-scale computational research.
Cancer Res. 77, e3–e6 (2017).

	44.	Yakneen, S. et al. Butler enables rapid cloud-based analysis of thousands of
human genomes. Nat. Biotechnol. 38, 288–292 (2020).

	45.	Perez-Riverol, Y. & Moreno, P. Scalable data analysis in proteomics and
metabolomics using BioContainers and workflows engines. Proteomics 20,
e1900147 (2020).

	46.	Fjukstad, B., Dumeaux, V., Hallett, M. & Bongo, L. A. Reproducible data
analysis pipelines for precision medicine. in 2019 27th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing
(PDP) 299–306 (IEEE, 2019).

	47.	Birger, C. et al. FireCloud, a scalable cloud-based platform for collaborative
genome analysis: strategies for reducing and controlling costs. Preprint at
bioRxiv https://doi.org/10.1101/209494 (2017).

	48.	Han, L., Canon, L., Casanova, H., Robert, Y. & Vivien, F. Checkpointing
workflows for fail-stop errors. IEEE Trans. Comput. 67, 1105–1120 (2018).

	49.	Jackson, M., Kavoussanakis, K. & Wallace, E. W. J. Using prototyping to
choose a bioinformatics workflow management system. PLoS Comput. Biol.
17, e1008622 (2021).

	50.	Goecks, J., Nekrutenko, A., Taylor, J. & Galaxy Team. Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol. 11, R86 (2010).

	51.	Fillbrunn, A. et al. KNIME for reproducible cross-domain analysis of life
science data. J. Biotechnol. 261, 149–156 (2017).

	52.	Berthold, M. R. et al. in Data Analysis, Machine Learning and Applications
319–326 (Springer, 2008).

	53.	Afgan, E. et al. The Galaxy platform for accessible, reproducible and
collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46,
W537–W544 (2018).

	54.	Batut, B. et al. Community-driven data analysis training for biology. Cell Syst.
6, 752–758 (2018).

	55.	Jalili, V. et al. The Galaxy platform for accessible, reproducible and
collaborative biomedical analyses: 2020 update. Nucleic Acids Res. 48,
W395–W402 (2020).

	56.	Ramírez, F. et al. deepTools2: a next generation web server for
deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

	57.	Cordasco, G., D’Auria, M., Negro, A., Scarano, V. & Spagnuolo, C. Toward a
domain-specific language for scientific workflow-based applications on
multicloud system. Concurr. Comput. e5802 (2020).

	58.	Mölder, F. et al. Sustainable data analysis with Snakemake. F1000Res. 10,
33 (2021).

	59.	Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow
engine. Bioinformatics 28, 2520–2522 (2012).

	60.	Bourgey, M. et al. GenPipes: an open-source framework for distributed and
scalable genomic analyses. Gigascience 8, giz037 (2019).

	61.	Sadedin, S. P., Pope, B. & Oshlack, A. Bpipe: a tool for running and managing
bioinformatics pipelines. Bioinformatics 28, 1525–1526 (2012).

	62.	Novella, J. A. et al. Container-based bioinformatics with Pachyderm.
Bioinformatics 35, 839–846 (2019).

	63.	Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M. & McCue, L. A. ATLAS:
a Snakemake workflow for assembly, annotation, and genomic binning of
metagenome sequence data. BMC Bioinformatics 21, 257 (2020).

	64.	Hölzer, M. & Marz, M. PoSeiDon: a Nextflow pipeline for the detection of
evolutionary recombination events and positive selection. Bioinformatics 37,
1018–1020 (2020).

	65.	Zhao, Q. et al. LncPipe: a Nextflow-based pipeline for identification and
analysis of long non-coding RNAs from RNA-seq data. J. Genet. Genomics 45,
399–401 (2018).

	66.	Cornwell, M. et al. VIPER: Visualization Pipeline for RNA-seq, a Snakemake
workflow for efficient and complete RNA-seq analysis. BMC Bioinformatics
19, 135 (2018).

	67.	Lampa, S., Dahlö, M., Alvarsson, J. & Spjuth, O. SciPipe: a workflow library
for agile development of complex and dynamic bioinformatics pipelines.
Gigascience 8, giz044 (2019).

	68.	Amstutz, P. et al. Common Workflow Language v1. 0 (2016);
https://doi.org/10.6084/m9.figshare.3115156.v2

	69.	Crusoe, M. R. et al. Methods included: standardizing computational
reuse and portability with the common workflow language. Preprint at
https://arxiv.org/abs/2105.07028 (2021).

	70.	Voss, K., Van der Auwera, G. & Gentry, J. Full-stack genomics pipelining with
GATK4 + WDL + Cromwell. F1000Res 6, 1381 (2017).

	71.	Vivian, J. et al. Toil enables reproducible, open source, big biomedical data
analyses. Nat. Biotechnol. 35, 314–316 (2017).

	72.	Kotliar, M., Kartashov, A. V. & Barski, A. CWL-Airflow: a lightweight
pipeline manager supporting Common Workflow Language. Gigascience 8,
giz084 (2019).

	73.	Yang, J. Cloud computing for storing and analyzing petabytes of genomic
data. J. Ind. Inf. Integr. 15, 50–57 (2019).

	74.	Xu, B., An, L., Thung, F., Khomh, F. & Lo, D. Why reinventing the wheels?
An empirical study on library reuse and re-implementation. Empir. Softw.
Eng. 25, 755–789 (2020).

	75.	McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework
for analyzing next-generation DNA sequencing data. Genome Res. 20,
1297–1303 (2010).

	76.	Bhardwaj, V. et al. snakePipes: facilitating flexible, scalable and integrative
epigenomic analysis. Bioinformatics 35, 4757–4759 (2019).

	77.	Ewels, P. A. et al. The nf-core framework for community-curated
bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).

	78.	Sicilia, M.-A., García-Barriocanal, E. & Sánchez-Alonso, S. Community
curation in open dataset repositories: insights from Zenodo. Procedia
Comput. Sci. 106, 54–60 (2017).

	79.	Leman, J. K. et al. Better together: elements of successful scientific software
development in a distributed collaborative community. PLoS Comput. Biol.
16, e1007507 (2020).

	80.	Weber, L. M. et al. Essential guidelines for computational method
benchmarking. Genome Biol. 20, 125 (2019).

	81.	Marx, V. Bench pressing with genomics benchmarkers. Nat. Methods 17,
255–258 (2020).

	82.	Angers-Loustau, A. et al. The challenges of designing a benchmark strategy
for bioinformatics pipelines in the identification of antimicrobial resistance
determinants using next generation sequencing technologies. F1000Res. 7,
J-459 (2018).

	83.	Möller, S. et al. Robust cross-platform workflows: how technical and scientific
communities collaborate to develop, test and share best practices for data
analysis. Data Sci. Eng. 2, 232–244 (2017).

	84.	Carey, V. J. et al. Global alliance for genomics and health meets Bioconductor:
toward reproducible and agile cancer genomics at Cloud scale. JCO Clin.
Cancer Inf. 4, 472–479 (2020).

	85.	List, M., Ebert, P. & Albrecht, F. Ten simple rules for developing usable
software in computational biology. PLoS Comput. Biol. 13, e1005265 (2017).

	86.	Karimzadeh, M. & Hoffman, M. M. Top considerations for creating
bioinformatics software documentation. Brief. Bioinform. 19, 693–699 (2018).

	87.	Anzt, H. et al. An environment for sustainable research software in Germany
and beyond: current state, open challenges, and call for action. F1000Res. 9,
295 (2020).

	88.	Mangul, S., Martin, L. S., Eskin, E. & Blekhman, R. Improving the usability
and archival stability of bioinformatics software. Genome Biol. 20, 47 (2019).

	89.	Siepel, A. Challenges in funding and developing genomic software: roots and
remedies. Genome Biol. 20, 147 (2019).

	90.	Malone, K. & Wolski, R. Doing data science on the shoulders of giants:
the value of open source software for the data science community. Harvard
Data Science Review https://hdsr.mitpress.mit.edu/pub/xsrt4zs2/release/4
(31 May 2020).

Acknowledgements
J.G. is supported by funding from the Agency for Science, Technology, and Research
(A∗STAR), Singapore, and by the Singapore Ministry of Health’s National Medical
Research Council under its Individual Research Grant funding scheme. L.W. was
supported by the Singapore International Pre-Graduate Award (SIPGA) from A*STAR
and the New Colombo Plan Scholarship from the Australian Department of Foreign
Affairs and Trade. We thank B. Grüning for helpful comments and suggestions on
this manuscript. We would like to thank R. Patro for contributing a test dataset for
the example workflow implementations. We thank M. van den Beek for contributing
the Galaxy workflow to the GitHub repository. We thank J. Köster for contributing
the Snakemake workflow to the GitHub repository. We thank P. Di Tommaso for

Nature Methods | VOL 18 | October 2021 | 1161–1168 | www.nature.com/naturemethods 1167

https://arxiv.org/abs/1303.7195
https://doi.org/10.1101/209494
https://doi.org/10.6084/m9.figshare.3115156.v2
https://arxiv.org/abs/2105.07028
https://hdsr.mitpress.mit.edu/pub/xsrt4zs2/release/4
http://www.nature.com/naturemethods

Perspective NaTure MeTHods

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41592-021-01254-9.

Correspondence should be addressed to Jonathan Göke.

Peer review information Nature Methods thanks Johannes Köster, Yasset Perez-Riverol,
Anton Nekrutenko, and Paolo Di Tommaso for their contribution to the peer review
of this work. Lin Tang was the primary editor on this article and managed its editorial
process and peer review in collaboration with the rest of the editorial team.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© Springer Nature America, Inc. 2021

contributing the Nextflow workflow to the GitHub repository. We thank S. Lampa for
contributing the SciPipe workflow to the GitHub repository. We thank J.H. Gálvez López,
P.-O. Quirion, E. Henrion, and M. Bourgey for contributing the GenPipes workflow
to the GitHub repository. We thank A. Novak, B. Paten, L. Blauvelt, and L. Koziol for
contributing the Toil workflow to the GitHub repository. We thank S. Sadedin for
contributing the Bpipe workflow to the GitHub repository. We thank S. Sadedin for
contributing the Bpipe workflow to the GitHub repository.

Author contributions
L.W., A.W., and J.G. planned the manuscript. L.W. and J.G. wrote the first draft. L.W.,
A.W., and J.G. wrote and revised the final manuscript.

Competing interests
A.W. is an employee of ImmunoScape Pte Ltd. L.W. and J.G. declare no competing interests.

Nature Methods | VOL 18 | October 2021 | 1161–1168 | www.nature.com/naturemethods1168

https://doi.org/10.1038/s41592-021-01254-9
http://www.nature.com/reprints
http://www.nature.com/naturemethods

	Reproducible, scalable, and shareable analysis pipelines with bioinformatics workflow managers

	Data provenance

	Portability

	Scalability

	Re-entrancy

	A practical guide to workflow management tools for pipeline development

	Graphical workflow managers: point-and-click pipeline development

	Domain-specific language workflow managers: rapid and flexible development

	Programming-library-based workflow managers

	Workflow specifications: portability across workflow systems

	Ready-to-use pipelines provide easy access to complex workflows

	Conclusion

	Future directions

	Acknowledgements

	Fig. 1 Overview of bioinformatics analysis workflows using an example of transcript expression quantification.
	Table 1 Overview of workflow managers for bioinformatics (top, editable version bottom, image version).
	Table 2 Overview of bioinformatics pipeline projects.

