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Increased throughput, new technologies, and higher sample num-
bers have contributed to the production of massive amounts of 
biological data1,2. While some of the largest data generators are 

national and international consortia, even research by individual 
teams now frequently uses high-throughput technology and sizable 
bioinformatics analysis. The analysis of biological data is driven 
by the development of an extensive array of open-source software 
tools3,4. Most of these tools carry out a single specialized step, which 
when chained together enables the creation of complex analysis 
workflows that process and analyze the increasing amount of bio-
logical data. However, with complex chains of steps, variability in 
operating systems and computational resources, and ambiguities 
with tool versioning and documentation5–7, reproducibility of analy-
sis workflows has become a key issue in computational biology8,9.

In order to minimize the number of manual steps that are 
required to execute an analysis workflow, computational pipelines 
automatically chain together multiple tools (Fig. 1a). Historically, 
computational pipelines were developed using custom scripts or 
Make files10,11 (Fig. 1b). These traditional pipelines greatly simplify 
the recurrent analysis of data. However, traditional pipelines are 
usually highly coupled to their local compute infrastructure; can-
not resume a failed run; lack sufficient documentation, parameter 
tracking, and tool versioning; and require manual installation when 
running on another device, making them difficult to share and 
maintain, and making produced results often impossible to repro-
duce11–13. Even when a user of a traditional pipeline installs relevant 
software and dependencies, as well as obtaining the exact software 
versions for each tool, analysis results can still differ5,6.

Data-heavy fields, such as banking, the automotive industry, and 
technology start-ups, have successfully used workflow managers 
to handle complex data analytics workflows (for example, https://
www.pachyderm.com/use-cases/, https://github.com/spotify/luigi, 
https://airbnb.io/projects/airflow/, https://github.com/Netflix/
metaflow, https://github.com/uber/cadence). Workflow managers 
provide a framework for the creation, execution, and monitoring of 
pipelines. In recent years, a number of workflow managers have been 
specifically designed for biomedical data11,14, directly addressing  

the need of computational analysis workflows in research and 
health care. Bioinformatics workflow managers offer integration 
with containers, package managers, and cloud computing, while 
providing automatic resource management15. Implementing a pipe-
line with a workflow manager can simplify pipeline development, 
maintenance, and use, while enabling portability and improving 
reproducibility (Fig. 1c).

Workflow managers provide a powerful tool for pipeline devel-
opment, yet many different frameworks exist that differ in their ease 
of use, ability for customization, documentation, and requirements 
of prior programming knowledge11. Here, we introduce the advan-
tages of workflow managers compared with traditional pipelines 
and compare some of the existing approaches. We review pipeline 
repositories that provide curated collections of pipelines to avoid 
re-implementing best-practice analysis workflows. We aim to pro-
vide a guide and overview to facilitate the use of workflow managers 
for computational and noncomputational users, while highlighting 
the concepts that we believe will become essential for data-driven 
research and applications in high-throughput biology.

Data provenance
In computational biology, one of the major challenges to enabling 
reproducibility is that any change in software versions, parameters, 
or reference annotation versions can alter the results16–20. Data prov-
enance describes this trail of methods, versions, and arguments that 
were used to generate a set of files21.

Workflow managers automate the process of input parameter 
and software tool version tracking for computational pipelines. 
They provide the option to generate execution reports with detailed 
information, such as input parameters to the pipeline; the execu-
tion environment; the software version of the workflow manager 
and tools used; resource usage information, including execution 
time and CPU usage; and parameters for each individual tool and 
a visualization of the pipeline steps. While execution reports are 
file-specific, the workflow itself can be publicly archived and made 
citable by obtaining a version-specific digital object identifier (DOI) 
through Zenodo22,23. This provides a high level of documentation on 
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how files are processed, enabling transparency, code sharing, and 
long-term reproducibility through data provenance.

Portability
Pipeline reports and DOIs ensure that a workflow can be run with 
identical parameters and software versions. However, executing the 
same pipeline code on another machine or operating system can 
still be impossible, for example, owing to missing dependencies or 
incompatible software versions. In contrast, a workflow that is por-
table can be executed with the same functionality across different 
platforms (provided that minimum hardware requirements, such as 
CPU and memory, are met for the workflow).

Workflow managers utilize two technologies to automate the 
software installation process and ensure portability across different 
platforms: package managers and containerization software9.

Package managers automate the process of installing and con-
figuring software, enabling a user to obtain all tools and depen-
dencies required to execute a pipeline with a single command, 
eliminating the need to locate and manually install tools with dis-
tinct installation requirements24,25. Examples of package manag-
ers are Homebrew (https://brew.sh/) for MacOS and Linux, and 
Conda (https://conda.io), which provides an isolated environment 
for pipeline execution in addition to efficiently installing pipeline 
dependencies26. In particular, Bioconda (https://bioconda.github.
io/), a Conda channel specializing in bioinformatics, has contrib-
uted to the availability and ease of installation of bioinformatics 
tools. Bioconda provides over 8,000 maintained and curated Conda 
recipes for bioinformatics software27. Package managers enable 
platform-independent software installation, largely eliminating the 
need for pipeline developers to write their own platform-specific 
recipes for dependency installation.

Containers, on the other hand, are a lightweight, configurable 
virtualization technology that allows packaging and distribution of 
pipelines and their corresponding dependencies in a self-contained 
and platform-independent manner28. Commonly used soft-
ware for containerization in bioinformatics includes Docker  

(https://www.docker.com/) and Singularity29. The repository 
Dockstore aggregates containerized bioinformatics tools and work-
flows into a searchable repository30, while the BioContainers31 
community initiative provides prebuilt containers to be used with 
Docker and Singularity. BioContainers was specifically designed to 
host bioinformatics software, transforming the way bioinformatics 
tools are installed and used, as well as making containerized soft-
ware accessible to noncomputational researchers.

Workflow managers seamlessly integrate containerization soft-
ware and package managers, enabling users to install dependencies 
and run a pipeline without the requirement for preinstalled local 
versions. Some workflow managers enable this option with a single 
command-line flag, thus ensuring cross-platform portability for 
scientific workflows. This approach to portability also increases 
reproducibility across different compute platforms, as factors such 
as the choice of operating system have been shown to influence  
analysis results12,32.

Scalability
The rapid rise of high-throughput technologies has greatly increased 
the scale and complexity of data that are routinely generated and 
analyzed. Being able to run the analysis of biological data at any scale 
in a fast and resource- and cost-efficient way has therefore become a 
key requirement for computational pipelines33,34. Scalability of pipe-
lines encompasses two aspects: efficient resource management and 
the ability to handle any size and quantity of input data35,36.

Resource management is particularly important for bioinfor-
matics workflows that consist of multiple steps that each have dif-
ferent CPU and memory requirements. Most workflow managers 
efficiently utilize resources through parallelization of the differ-
ent steps37. Workflow managers implement parallelization in a 
number of ways, including static scheduling, job-queue sched-
uling, and adaptive scheduling38. The choice of implementation 
of workflow scheduling as well as whether parallelization occurs 
on the data, task, or pipeline level influences both workflow per-
formance and the way users write workflows for the system39.  

Table 1 | Overview of workflow managers for bioinformatics (top, editable version; bottom, image version)

Tool Class Ease of 
usea

Expressivenessb Portabilityc Scalabilityd Learning 
resourcese

Pipeline 
initiativesf

Galaxy Graphical ●●● ●○○ ●●● ●●● ●●● ●●○
KNIME Graphical ●●● ●○○ ○○○ ●●◐ ●●● ●●○

Nextflow DSL ●●○ ●●● ●●● ●●● ●●● ●●●

Snakemake DSL ●●○ ●●● ●●◐ ●●● ●●○ ●●●

GenPipes DSL ●●○ ●●● ●●○ ●●○ ●●○ ●●○

bPipe DSL ●●○ ●●● ●●○ ●●◐ ●●○ ●○○

Pachyderm DSL ●●○ ●●● ●○○ ●●○ ●●● ○○○

SciPipe Library ●●○ ●●● ○○○ ○○○ ●●○ ○○○

Luigi Library ●●○ ●●● ●○○ ●●◐ ●●○ ○○○

Cromwell + 
WDL

Execution + workflow 
specification

●○○ ●●○ ●●● ●●◐ ●●○ ●●○

cwltool + CWL Execution + workflow 
specification

●○○ ●●○ ●●◐ ○○○ ●●● ●●○

Toil + CWL/
WDL/Python

Execution + workflow 
specification

●○○ ●●● ●◐○ ●●● ●●○ ●●○

Please refer to Supplementary Table 1 for details. This information is based on online documentation and manuscripts and may not be reflective of the current state of the projects. Scores for Galaxy 
are based on the graphical user interface. aEase of use: graphical interface with execution environment (score of 3), programming interface with in-built execution environment (score of 2), separated 
development and execution environment (score of 1). bExpressiveness: based on an existing programming language (3) or a new language or restricted vocabulary (2), primary interaction with graphical 
user interface (1). cPortability: integration with three or more container and package manager platforms (3), two platforms are supported (2), one platform is supported (1). dScalability: considers cloud 
support, scheduler and orchestration tool integration, and executor support. Please refer to Supplementary Table 1. eLearning resources: official tutorials, forums, and events (3), tutorials and forums (2), 
tutorials or forums (1). fPipelines initiatives: community and curated (3), community or curated (2), not community or curated (1).
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By dynamically scheduling independent tasks during execution 
of the pipeline, unused resources can be utilized without affecting 
the most resource-intensive steps. This process enables the effec-
tive handling of large datasets and minimizes bottlenecks that 
increase running time. Workflow managers provide a high degree 
of flexibility to control resource utilization, as memory and 
compute requirements can be specified for each step or for the  
entire workflow40.

Even with optimal resource management, the maximum 
scalability of traditional pipelines is limited by the local com-
pute infrastructure. Workflow managers achieve scalability 
beyond the local infrastructure by providing in-built support for 
high-performance computing environments and cloud computing 
services41–44. Workflow managers often provide simple options to 
execute the same pipeline on different compute infrastructures, 
with direct support for major cloud compute providers and popu-
lar scheduling software45. In addition, some workflow manag-
ers can use container orchestration systems, such as Kubernetes 
(https://kubernetes.io/) and Docker Swarm (https://docs.docker.
com/engine/swarm/), to automatically manage the scheduling and 
deployment of containers, further enabling the effective utilization 
of available resources.

The optimized resource management and support for major exe-
cution infrastructures ensure that pipelines written with workflow 
managers can be scaled for the efficient analysis of small and large 
datasets.

Re-entrancy
With the rise of pay-as-you-use cloud computing and the use 
of pipelines for clinical and industrial applications, cost and 
time-to-result have become important factors in pipeline execu-
tion42,46,47. Computational workflows often have a large number of 
steps that can be resource intensive. When the execution of a tradi-
tional pipeline is disrupted owing to errors or manual intervention, 
it has to be restarted from the first step, thereby recomputing already 
computed results and thus wasting computational resources.

Workflow managers can handle such events by enabling 
re-entrancy. Re-entrancy allows users to run a pipeline from its last 
successfully executed step, rather than from the beginning, in the 
case of a disruption. Re-entrancy also minimizes the need for recal-
culation of frequent data-processing steps such as saving reference 
genomes and index creation. To achieve this, workflow managers 
use caching to save intermediate results and data files and compare 
this with the expected output to generate only necessary files48. 
Workflow managers vary in their implementation of re-entrancy, 
which may result in differences in storage overheads because of 
intermediate file generation. Re-entrancy saves significant time and 
compute resources and is a key advantage of workflow managers49.

A practical guide to workflow management tools for 
pipeline development
There are over 150 workflow managers currently in use and under 
development (https://github.com/common-workflow-language/
common-workflow-language/wiki/Existing-Workflow-systems; 
https://github.com/pditommaso/awesome-pipeline).

One of the main distinctions between workflow managers is the 
trade-off between ease of use, flexibility, and feature richness. While 
some workflow managers enable the implementation of pipelines 
with simple graphical user interfaces, others require minimal or 
more advanced programming knowledge. The increased level of 
expressiveness and abstraction enables the implementation of more 
flexible and powerful pipelines, often required by bioinformatics 
core units or collaborative consortia. Additional criteria that distin-
guish workflow managers are the availability of learning resources, 
access to preimplemented pipelines, and differences in portabil-
ity and scalability (Table 1 and Supplementary Table 1). While 
we believe that a comparison of workflow managers can provide 
a useful overview, criteria such as ease of use and expressiveness 
are based on definitions that capture only one aspect and as such 
are subjective and will differ for each user. Many more workflow 
managers exist, and it is important to note that this is a simplified 
representation that does not capture most of the aspects and fea-
tures that are often dynamically evolving and as such should not 
be interpreted as a ranking. Criteria such as personal preferences 
of programming languages, access to a local community or sup-
port within an institute, uptake by the global community, long-term 
support, and active development can often be equally or even more 
important to consider.

Graphical workflow managers: point-and-click pipeline 
development
Graphical workflow managers support user interaction through a 
graphical user interface. They provide a point-and-click interface 
for users to drag and drop tools into workflows and chain them 
together, enabling the creation of complex computational pipelines 
without programming experience.

Examples of graphical workflow managers are Galaxy, a 
web-based platform for bioinformatics workflows50, and KNIME, 
a graphical tool for building machine-learning and data science 
workflows51,52. Galaxy features over 8,000 tools (https://toolshed.
g2.bx.psu.edu/)53 and an abundance of learning resources (https://
galaxyproject.org/learn/; https://training.galaxyproject.org/)54. 
Galaxy is actively maintained by a core team and an active commu-
nity, with a large number of pipelines being published55. The Galaxy 
project provides public infrastructure to run workflows without 
incurring costs as well as functionality for specialized data analy-
sis and visualization that go beyond the functionality of most other 

Table 2 | Overview of bioinformatics pipeline projects

Pipeline initiative Tool Curateda Communityb Citablec Pipelinesd

nf-core Nextflow ✓ ✓ ✓ 27

snakePipes Snakemake ✓ ✗ ✓ 9

Snakemake-Workflows Snakemake ✓ ✓ ✓ 7

GenPipes GenPipes ✓ ✗ ✓ 12

Galaxy Community Galaxy ✗ ✓ ✗ >1,000

BioWDL WDL ✓ ✗ ✓ 17

WARP WDL ✓ ✗ ✗ 8

KNIME Hub KNIME ✗ ✓ ✗ >1,000
aCurated: peer review or best practice, ability to ask questions of developers, and extensive documentation with clear contribution guidelines and testing. bCommunity: not hosted on institute-specific 
infrastructure and developers from various institutes. cCitable: provides guidelines for pipeline citation. dPipelines: number of released pipelines (not counting drafts or prereleases).
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workflow managers56. These aspects make Galaxy a powerful choice 
for users with or without computational expertise who would like to 
assemble and run custom bioinformatics workflows.

Domain-specific language workflow managers: rapid and 
flexible development
A domain-specific language (DSL) is a programming language 
that is developed to meet a specific need within a particular 
domain57. Workflow managers that are implemented as DSLs are 
developed to enable the rapid deployment of reproducible, robust, 
and portable computational pipelines and support features spe-
cifically for this purpose. Hence, there are many shared features 
across workflow managers that implement their own DSL, includ-
ing the ability to incorporate existing tools or pipelines written in 
other scripting languages, making it easy to port tools over and 
minimizing refactoring.

Nextflow6 and Snakemake58 are popular examples of DSL-based 
workflow managers that are designed for bioinformaticians famil-
iar with programming. Nextflow, which uses an extension of the 
Groovy programming language, breaks down each step of a pipe-
line into modular components and connects these through channels 
that determine pipeline execution (dataflow paradigm)6. In contrast, 
Snakemake’s language is similar to that of standard Python syntax 
and works backwards by requesting output files and defining each 

step required to produce them (similar to Make)59. Additional exam-
ples of DSL-based workflow managers are GenPipes, a Python-based 
DSL tool for genomics workflows60, bPipe, which aims for syntactic 
simplicity using a Groovy-based DSL61, and Pachyderm, which is 
used in the banking and automotive industries and also has applica-
tions in biotechnology62. All of these workflow managers provide 
a robust and programmatic interface to create pipelines, support 
containers to ensure portability, and automatically handle resources 
to optimize scalability (Table 1). A unique feature of Snakemake 
and Nextflow is the ability to create reusable modules for steps of 
a workflow. The use of such modules further reduces the com-
plexity of code, increases the readability and maintainability, and 
makes it easy to extend, reuse, or replace individual steps of analysis 
workflows (https://snakemake.readthedocs.io/en/stable/snakefiles/ 
modularization.html; https://www.nextflow.io/blog/2020/dsl2-is-here. 
html). Snakemake also enables between-workflow caching to avoid 
recomputation of shared steps between pipelines (https://snakemake. 
readthedocs.io/en/stable/executing/caching.html).

DSL-based workflow managers are well-suited for researchers or 
teams with prior programming experience. While they provide a 
powerful framework for rapid pipeline development and minimize 
the amount of refactoring for pre-existing tools and scripts, the ini-
tial learning curve can be steeper than that for graphical workflow 
managers. To aid this initial learning curve, popular DSL-based 
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Fig. 1 | Overview of bioinformatics analysis workflows using an example of transcript expression quantification. a, Analysis workflow describing the input 
data (gray), software, software and reference data versions and parameters (green), and output files (orange). b, Traditional pipeline implementations 
are coupled to the local compute environment and are sensitive to changes in software or data versions. c, Implementation of the analysis workflow using 
a workflow manager decouples the code from the execution environment, enabling portability and more meaningful code sharing. Workflow managers 
provide options for scalability and optimize resource usage through re-entrance checkpoints and parallelization of steps. Containerized software makes 
local software installation requirements unnecessary. Execution reports can track parameters and versions, providing transparency and data provenance.
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workflow managers provide an abundance of learning resources 
and direct access to community support. Among the DSL-based 
workflow managers, Nextflow and Snakemake have the largest 
active community with a large number of published ready-to-use 
pipelines (for example, refs. 63–66), making them a popular choice for 
computational users and teams that want to have maximum flex-
ibility to design custom pipelines.

Programming-library-based workflow managers
While graphical and DSL workflow managers are currently 
the most widely used frameworks for bioinformatics pipe-
lines, there are some other types of workflow managers, such as 
programming-library-based tools. Programming-library-based 
workflow managers implement their pipeline management systems 
as a programming library for an existing, popular programming 
language. SciPipe67, a library for the Go programming language, 
and Luigi (https://github.com/spotify/luigi), a Python package 
developed by Spotify, are examples of programming-library-based 
workflow managers. They leverage existing tooling, text editor 
support, and other programming libraries in the language67. A 
programming-library-based workflow manager benefits research-
ers who are already familiar with a programming language and wish 
to minimize the learning curve of a DSL tool. Compared with other 
workflow managers, programming-library-based frameworks cur-
rently support fewer features and are less adopted for bioinformatics 
applications (Table 1).

Workflow specifications: portability across workflow 
systems
Workflow specifications provide a set of formalized rules for defin-
ing computational pipelines. This allows the separation of the 
pipeline definition from the execution environment, thereby add-
ing another layer of abstraction. Workflow specifications enable 
the definition of pipelines that can be executed across workflow 
managers or execution environments that support the standard21. 
One example of a workflow specification is the Common Workflow 
Language (CWL) (https://www.commonwl.org)68,69. CWL defines 
pipelines using YAML (http://yaml.org/) or JavaScript Object 
Notation (JSON) (http://www.json.org/) formats—human-readable, 
data-serialization languages. In contrast, the Workflow Description 
Language (WDL, pronounced ‘widdle’) (https://openwdl.org/) 
defines its own human-readable definition language. Execution 
engines such as Cromwell70 (https://github.com/broadinstitute/
cromwell) and the CWL reference implementation cwltool (https://
github.com/common-workflow-language/cwltool) have been 
developed specifically to run CWL and WDL pipelines, with some 
existing workflow managers, such as Toil, incorporating CWL and 
WDL support71,72. Some DSL-based workflow managers such as  
Snakemake implement CWL export functionality (https://snakemake. 
readthedocs.io/en/stable/executing/interoperability.html)58.

Workflow specifications such as CWL and WDL are suited 
to researchers who want to decouple their pipelines from a spe-
cific workflow manager to enable a higher degree of portability. 
Workflow specifications make it easy to define pipelines: they are 
easy to read and provide the highest level of portability and the most 
flexible framework for sharing73. However, owing to the additional 
abstraction from separating workflow definition and execution 
environment, they might appear less convenient than some of the 
existing workflow managers.

Ready-to-use pipelines provide easy access to complex 
workflows
The advantages of using workflow managers have contributed to a 
growing number of publications that provide individual workflow 
implementations to ensure reproducibility of computational find-
ings. However, most computational pipelines that are developed 

remain unpublished, with the vast majority likely being reimple-
mentations of similar workflows by different teams or institutions 
that perform the same analysis74. A notable example of this is the 
Genome Analysis Toolkit Best Practises pipeline75, which was devel-
oped to standardize genomic analysis and now has over 200 imple-
mentations on GitHub (https://github.com/search?q=GATK+pipel
ine&type=Repositories).

To address this, pipeline collections have been developed for all 
major bioinformatics workflow managers, enabling the easy shar-
ing of pipelines while often dramatically simplifying their execu-
tion (Table 2). One of the most extensive collections is hosted by 
the Galaxy Community project (https://usegalaxy.org/workflows/
list_published; https://usegalaxy.eu/workflows/list_published). The 
Galaxy Community enables anyone to share and execute pipelines, 
facilitating transparency and reproducibility of scientific workflows. 
Similarly, KNIME Hub (https://hub.knime.com/) hosts community 
pipelines for KNIME workflows. However, community pipelines 
are not required to be peer-reviewed, documented, or maintained.

In contrast, curated pipeline collections have undergone testing 
and peer review. Such pipelines are often required to have excellent 
documentation with usage, examples and a description of results, and 
they are required to be actively maintained by developers. Projects 
such as snakePipes76, GenPipes60, BioWDL (https://biowdl.github.
io/) and WARP (https://broadinstitute.github.io/warp/) provide col-
lections of curated pipelines implemented in Snakemake, GenPipes, 
and WDL, respectively. While these projects ensure that pipelines 
are maintained and adhere to best practices, they are often smaller 
and more focused than community-developed pipeline initiatives.

The nf-core project aims to bridge this gap by hosting 
community-curated pipelines77. nf-core provides a framework to 
host Nextflow pipelines, and it requires specific best practices and 
sets standards for pipeline implementations to guarantee their 
maintenance, documentation, portability, scalability, and repro-
ducibility. Among the curated pipeline initiatives, nf-core currently 
has the largest number of contributors, pipelines, and individual 
pipeline publications. Snakemake-Workflows is a GitHub reposi-
tory featuring best-practice, manually reviewed Snakemake work-
flows with continuous integration testing (https://github.com/
snakemake-workflows), while the IWC initiative aims to provide a 
collection of community-contributed best-practice workflows for 
Galaxy (https://github.com/galaxyproject/iwc/).

All curated pipeline initiatives enable citability of pipelines 
and thereby reproducibility of computational analysis78. While 
snakePipes and GenPipes provide a central reference for the pipe-
line project, nf-core and bioWDL enable the citation of individual 
pipelines, often with Zenodo DOIs that identify specific release ver-
sions (https://zenodo.org/). Curated pipeline projects eliminate the 
need to redevelop existing pipelines, and they enable researchers 
without computational experience to use best practices for bioin-
formatics workflows without the initial learning curve, bringing the 
power of workflow managers to a much broader audience.

Conclusion
As the need for reproducibility in computational analysis contin-
ues to grow, bioinformatics workflow managers have become a 
key technology. Workflow managers simplify the implementation 
of robust and complex analysis while providing additional features 
that help to optimize resource management and reproducibility. Yet, 
even for noncomputational users, workflow managers might prove 
to be transformative. Easy-to-use graphical workflow managers, 
such as Galaxy, and ready-to-use pipeline repositories, like nf-core, 
enable the execution of complex analysis without programming 
experience53,77.

Reproducibility is a major factor for the development of analysis 
pipelines and can in theory be achieved with well-written custom 
pipelines. However, workflow managers go beyond the minimal 
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requirements for reproducibility. By improving data provenance, 
readability, and portability, they increase transparency, enable 
long-term sustainability of analysis workflows58, and aid in achiev-
ing FAIR (findable, accessible, interoperable, and reusable) com-
putational analysis22,23. In particular, the ability to collaboratively 
develop and share pipelines has led to one of the largest transforma-
tions brought by workflow managers. Computational methods are 
now frequently accompanied with a workflow, core units and bioin-
formatics teams can make their pipelines available, and international 
consortia rely on workflow managers for massive data processing.

Community-developed pipelines have been a key contribution 
toward the increased sharing of code for analysis workflows79, with 
curated code repositories enabling the use of best-practice pipelines 
while providing a template that can be adopted to capture the diver-
sity of tools that often exists. While the use of curated best-practice 
pipelines ensures robustness, many different best practices might 
exist for the analysis of biological data. In order to maintain and 
demonstrate the high standards of public pipelines, benchmark-
ing studies will be needed80. While most existing benchmarking 
studies focus on individual aspects of workflows, benchmarking 
studies that cover not just individual methods, but also complete 
workflows, will be essential to evaluate the increasing number of 
ready-to-use pipelines81–83.

Future directions
While features and use-cases are currently distinguished by the class 
of workflow manager, such distinctions will become less clear as 
workflow manager projects continue to grow and evolve. DSL work-
flow managers have already introduced graphical user interfaces to 
deploy and monitor pipelines in the cloud, workflow specifications 
provide tools for closer integration with existing programming lan-
guages, and powerful features and a large community make graphical 
workflow managers attractive to experienced computational pipe-
line and methods developers. At the same time, workflow reposito-
ries such as WorkflowHub.eu or Dockstore30, which originated from 
the complex analysis requirements of large cancer consortia84, host 
pipelines for graphical, DSL, and workflow-specification languages, 
further removing barriers. With a growing number of different 
workflow managers that support standardized approaches, the per-
formance of the workflow managers themselves will become more 
relevant. Although benchmarking for scientific software is already 
common, systematic and quantitative evaluation of the robustness, 
memory, and storage requirements for different workflow managers 
will provide further guidance and directions for future developments.

Most bioinformatics software, including workflow managers, is 
developed as academic open-source projects. While this ecosystem 
is powerful in providing new solutions, reproducibility of computa-
tional analysis workflows requires long-term maintenance85, code 
documentation86, and support for underlying bioinformatics soft-
ware87,88. However, maintaining open-source projects over a long 
period of time is a major effort4. The importance of long-term soft-
ware maintenance is increasingly appreciated: dedicated funding for 
essential open-source projects has been made accessible89 (https://
chanzuckerberg.com/), and publicly funded solutions for long-term 
archiving of data and code are available90. By addressing some of the 
major challenges faced with complex biomedical data processing, 
workflow managers have already become an essential tool for com-
putational and noncomputational biologists. Combined with initia-
tives that support and fund best practices for software development 
and maintenance, standardization, and evaluation, they provide a 
powerful framework and long-lasting impact to increase the qual-
ity and sustainability of code for bioinformatics analysis workflows.

Code availability
Minimal example workflows and links to documentation are available 
under https://github.com/GoekeLab/bioinformatics-workflows.
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