
John A. Juma

28th April, 2022

j.juma@cgiar.org

Introduction to Bioinformatics workflows
with Nextflow and nf-core

mailto:j.juma@cgiar.org

Questions
1. What is a workflow and what are workflow management systems?
2. Why should I use a workflow management system?
3. What is Nextflow?
4. What are the main features of Nextflow?
5. What are the main components of a Nextflow script?
6. How do I run a Nextflow script?

Objectives
1. Understand what a workflow management system is.
2. Understand the benefits of using a workflow management system.
3. Explain the benefits of using Nextflow as part of your bioinformatics workflow.
4. Explain the components of a Nextflow script.
5. Run a Nextflow script.

Overview

Analysing data involves a sequence of
tasks, including gathering, cleaning, and
processing data. These sequence of
tasks are called a workflow or a pipeline.

Workflows

Example bioinformatics variant calling workflow/pipeline
diagram from nf-core (https://nf-co.re/sarek)

https://nf-co.re/sarek

Workflow Management Systems (WfMS), such as Snakemake, Galaxy, and Nextflow have been
developed specifically to manage computational data-analysis workflows in fields such as
Bioinformatics, Imaging, Physics, and Chemistry.

WfMS contain multiple features that simplify the development, monitoring, execution and sharing of
pipelines. Key features include;

1. Run time management: Management of program execution on the operating system and
splitting tasks and data to run at the same time in a process called parallelization.

2. Software management: Use of technology like containers, such as Docker or Singularity, that
packages up code and all its dependencies so the application runs reliably from one
computing environment to another.

3. Portability & Interoperability: Workflows written on one system can be run on another
computing infrastructure e.g., local computer, compute cluster, or cloud infrastructure.

4. Reproducibility: The use of software management systems and a pipeline specification means
that the workflow will produce the same results when re-run, including on different computing
platforms.

5. Reentrancy: Continuous checkpoints allow workflows to resume from the last successfully
executed steps.

Workflow management systems

https://www.docker.com/
https://sylabs.io/singularity

Differences between Nextflow and
Snakemake

Snakemake Nextflow

Language Python Groovy

Data Everything is a file Can use both files and values

Execution Working directory Each job in its own directory

Philosophy “Pull” “Push”

Dry runs Yes No

Track code changes No Yes

• Nextflow scripts are written using a language intended to simplify the writing of workflows.
Languages written for a specific field are called Domain Specific Languages (DSL), e.g., SQL is used
to work with databases, and AWK is designed for text processing.

• In practical terms the Nextflow scripting language is an extension of the Groovy programming
language, which in turn is a super-set of the Java programming language. Groovy simplifies the
writing of code and is more approachable than Java. Groovy semantics (syntax, control structures,
etc) are documented here.

• The approach of having a simple DSL built on top of a more powerful general purpose
programming language makes Nextflow very flexible. The Nextflow syntax can handle most
workflow use cases with ease, and then Groovy can be used to handle corner cases which may be
difficult to implement using the DSL.

Scripting language

https://groovy-lang.org/
https://groovy-lang.org/semantics.html

Nextflow (version > 20.07.1) provides a revised syntax to the original DSL, known as DSL2. The DSL2
syntax introduces several improvements such as modularity (separating components to provide
flexibility and enable reuse), and improved data flow manipulation. This further simplifies the writing of
complex data analysis pipelines, and enhances workflow readability, and reusability.

This feature is enabled by the following directive at the beginning a workflow script:

nextflow.enable.dsl=2

DSL2 syntax

Nextflow workflows have three main parts; processes, channels, and workflows.

• Processes describe a task to be run. A process script can be written in any scripting language that
can be executed by the Linux platform (Bash, Perl, Ruby, Python, etc.). Processes spawn a task for
each complete input set. Each task is executed independently and cannot interact with another
task. The only way data can be passed between process tasks is via asynchronous queues, called
channels. Processes define inputs and outputs for a task.

• Channels are then used to manipulate the flow of data from one process to the next. The
interaction between processes, and ultimately the pipeline execution flow itself, is then explicitly
defined in a workflow section.

Processes, channels, and workflows

In the following example we have a channel containing three elements, e.g., 3 data files. We have a
process that takes the channel as input. Since the channel has three elements, three independent
instances (tasks) of that process are run in parallel. Each task generates an output, which is passed to
another channel and used as input for the next process.

Processes and channels

Nextflow process flow diagram

While a process defines what command or script has to be executed, the executor determines how
that script is run in the target system.

If not otherwise specified, processes are executed on the local computer. The local executor is very
useful for pipeline development, testing, and small scale workflows, but for large scale computational
pipelines, a High Performance Cluster (HPC) or Cloud platform is often required.

Workflow execution

Nextflow Executors

nextflow.enable.dsl=2

process < NAME > {
[directives]

input:
< process inputs >

output:
< process outputs >

when:
< condition >

[script|shell|exec]:
< user script to be executed >

}

Process definition block

process PROCESSBAM {

script:
"""
samtools sort -o ref1.sorted.bam ${projectDir}/data/yeast/bams/ref1.bam
samtools index ref1.sorted.bam
samtools flagstat ref1.sorted.bam
"""

}

Run a command in shell

//process_python.nf
nextflow.enable.dsl=2

process PYSTUFF {

script:
"""
#!/usr/bin/env python
import gzip
reads = 0
bases = 0
with gzip.open('${projectDir}/data/yeast/reads/ref1_1.fq.gz', 'rb') as read:

for id in read:
seq = next(read)
reads += 1
bases += len(seq.strip())
next(read)
next(read)

print("reads", reads)
print("bases", bases)
"""

}

workflow {
PYSTUFF()

}

Run a python script

1. An optional interpreter directive (“Shebang”) line, specifying the location of the Nextflow interpreter.
nextflow.enable.dsl=2 to enable DSL2 syntax.

2. A multi-line Nextflow comment, written using C style block comments, followed by a single line comment.

3. A pipeline parameter params.input which is given a default value, of the relative path to the location of a
compressed fastq file, as a string.

4. An unnamed workflow execution block, which is the default workflow to run.

5. A Nextflow channel used to read in data to the workflow.

6. A call to the process NUM_LINES. An operation on the process output, using the channel operator view().

7. A Nextflow process block named NUM_LINES, which defines what the process does.

8. An input definition block that assigns the input to the variable read, and declares that it should be interpreted as a file
path.

9. An output definition block that uses the Linux/Unix standard output stream stdout from the script block.

Your first script

Summary

Channels and Operators

Channels are asynchronous, which means that outputs from a set of processes will not
necessarily be produced in the same order as the corresponding inputs went in. However, the
first element into a channel queue is the first out of the queue (First in - First out). This allows
processes to run as soon as they receive input from a channel. Channels only send data in one
direction, from a producer (a process/operator), to a consumer (another process/operator).

Channels

Channel types
Nextflow distinguishes between two different kinds of channels: queue channels and value channels.

Queue channel
Queue channels are a type of channel in which data is consumed (used up) to make input for a
process/operator. Queue channels can be created in two ways:

1. As the outputs of a process.
2. Explicitly using channel factory methods such as Channel.of or Channel.fromPath.

Value channels
The second type of Nextflow channel is a value channel. A value channel is bound to a single value
(singleton). A value channel can be used an unlimited number times since its content is not consumed. This
is also useful for processes that need to reuse input from a channel, for example, a reference genome
sequence file that is required by multiple steps within a process, or by more than one process.

In Nextflow DSL1 queue channels can only be used once in a workflow, either connecting workflow input to
process input, or process output to input for another process. In DSL2 we can use a queue channel multiple
times.

https://www.nextflow.io/docs/latest/channel.html
https://www.nextflow.io/docs/latest/channel.html

Channel types

Queue channel factory
Queue (consumable) channels can be created using the following channel factory methods.

• Channel.of
• Channel.fromList
• Channel.fromPath
• Channel.fromFilePairs
• Channel.fromSRA

‘’GRCh38”

['chr1','chr2','chr3','chr4','chr5']

ch1 = Channel.value('GRCh38')

ch2 = Channel.value(['chr1','chr2','chr3','chr4','chr5'])

Operators

chr1 chr2 chr5 chr7chromosome_ch = Channel.of('chr1','chr3','chr5','chr7')

1. 2. 3. 4

1. 2. 3. 4. A.

[1. , 2. , 3. , 4. , A.]

A.
collect

mix

ch1.mix(ch2).collect()

ch1=channel.of(1,2,3,4)

ch2=channel.of(‘A’)

reads

yeast

data

transcriptome

Channel.fromPath(“/data/yeast/reads/*”)

ref1_1.fq ref1_2.fq temp33_1.fq temp33_2.fq

“ref1”,[ref1_1.fq,ref1_2.fq] ”temp33’,[temp33_1.fq,temp33_2.fq]

Channel.fromPath(“/data/yeast/reads/*_{1,2}.fq”)

Channel.fromFilePairs(“/data/yeast/reads/*_{1,2}.fq”,size:2)

Filtering

1 “A” “Z” 12 filter(Number) 1 12

Transforming

“ch1” “chr2” “chr3” “chr4”

map({it.replaceAll(“chr”,””)})

“1” “2” “3” “4”

“ch1” “chr2” “chr3” “chr4”

flatten()

[“chr1”,”chr2”,”chr3”,”chr4”]

“ch1” “chr2” “chr3” “chr4”

collect()

[“chr1”,”chr2”,”chr3”,”chr4”]

ref1_1.fq ref1_2.fq temp33_1.fq temp33_2.fq count 4

Availability
Nextflow Tower is an open-source monitoring and management platform for Nextflow workflows
developed by Seqera Labs.

• The community version of Tower is available from https://github.com/seqeralabs/nf-tower. It
can be deployed in a user's own environment and has features for single users to monitor their
Nextflow pipelines, deployed anywhere.

• The fully-featured enterprise version of Tower is available from Seqera Labs. It can be deployed
in a customers own on-premise or cloud environment and includes advanced workflow
management, resource optimization and enterprise-grade support.

https://www.nextflow.io/
https://seqera.io/
https://github.com/seqeralabs/nf-tower

Clients

1. https://training.seqera.io/

2. https://carpentries-incubator.github.io/workflows-nextflow/01-getting-started-with-nextflow/index.html

3. https://seqera.io/tower/

Opportunities
1. https://nf-co.re/mentorships

Acknowledgement and further reading

https://training.seqera.io/
https://carpentries-incubator.github.io/workflows-nextflow/01-getting-started-with-nextflow/index.html
https://seqera.io/tower/
https://nf-co.re/mentorships

Exercises: Simple RNA-seq pipeline

We will follow a simple exercise that also captures what we
have learned in the past few days. (Git, Conda, Docker)

Material: https://github.com/ajodeh-juma/ngs-academy-africa-nfcore

Example simple RNA-Seq pipeline in DAG format
diagram from nf-core (https://nf-co.re/sarek)

https://training.seqera.io/
https://nf-co.re/sarek

