
Bioinformatics Foundational Course Module B04: Introduction to Programming 1

Module
Introduction to Programming

B04
 back to the table

of modules

Module last updated:
December 2024

Bioinformatics Foundational Course Module B04: Introduction to Programming

Suggested or approximate
number of sessions

5-6

Suggested or approximate
total learning time

20-24 hours (practice required)

Target audience Bioinformaticians

Delivery format Lectures, videos, practicals with data examples, code review sessions

Level of the module Introductory to Intermediate

Contributors

Hocine Bendou, George Githinji, John Juma, Shahiid Kiyaga, Perceval Maturure, Kennedy Mwai, Nicola
Mulder and Verena Ras.

Suggested prerequisite module(s)

 Module B01. Introduction to Unix/Linux, Command Line, and Shell Scripting
 Module B02. Introduction to Version Control

Module description

Programming tasks include developing new algorithms, managing and analyzing large volumes of data
generated in research projects, integrating diverse datasets to tackle complex problems, and performing
other computational tasks essential to scientific endeavors. This module aims to assist novice programmers
in writing modular code for data analysis. The module recommends teaching language-agnostic
programming principles, but examples can be introduced using different programming languages, such as
Bash, Python, or R. These principles include automation with loops and encapsulation with functions, as well
as best practices for scientific software development. These practices are rooted in extensive research and
practical experience and aim to enhance scientists' productivity and the reliability of their software. In this
module, participants are also introduced to the following topics and/or concepts:

2

https://drive.google.com/file/d/1NnQhodNNEpQ6WLvi-TuBwRVmGaxsLXRY/view?usp=drive_link
https://drive.google.com/file/d/1HQNN8lybwI3v_jL6j8rQL1rEI3f2rO5q/view?usp=drive_link

Bioinformatics Foundational Course Module B04: Introduction to Programming

 Basic data types such as integers, strings, and floating-point numbers

 Using variables -value to assign a value to a variable in order to record it in memory. Variables are

created on demand whenever a value is assigned to them.
 Data structures & algorithms

 Control flow/conditionals and loops e.g if, elif, else statements and loop or while loops

 Introduction to a programming interfaces, e.g an IDE or a Jupyter Notebooks

 Debugging and troubleshooting

 Using print(something) to display the value of something.

 Using # to provide some kind of explanation or to add comments to programs.

 Built-in functions

 Reading and writing I/O text files

 Working with modules for data science and visualization, including Numpy, Pandas, and Matplotlib.

 Writing scripts and introducing the concept of object-oriented programming.

 Introducing Biopython using real genomics data.

 How to find, load, and run Biopython modules.

 Parallelizing code

 Work with AI-generated code

Summary of best practices to teach trainees

 Write programs for people, not computers.

 A program should not require its readers to hold more than a handful of facts in memory at once.

 Make names consistent, distinctive, and meaningful.

 Make code style and formatting consistent.

 Let the computer do the work.

 Make the computer repeat tasks.

 Save recent commands in a file for re-use.

 Use a build tool to automate workflows.

 Make incremental changes.

 Work in small steps with frequent feedback and course correction.

 Use a version control system.

 Put everything that has been created manually in version control.

 Don't repeat yourself (or others).

 Every piece of data must have a single authoritative representation in the system.

 Modularize code rather than copying and pasting.

 Re-use code instead of rewriting it. Plan for mistakes.

 Add assertions to programs to check their operation.

 Use an off-the-shelf unit testing library.

 Turn bugs into test cases. Use a symbolic debugger.

 Optimize software only after it works correctly.

 Use a profiler to identify bottlenecks.

3

Bioinformatics Foundational Course Module B04: Introduction to Programming

 Write code in the highest-level language possible.

 Document design and purpose, not mechanics.

 Document interfaces and reasons, not implementations.

 Refactor code in preference to explaining how it works.

 Embed the documentation for a piece of software in that software.

 Collaborate. Use pre-merge code reviews.

 Use pair programming when bringing someone new up to speed and when tackling particularly tricky

problems. Use an issue-tracking tool.

Module learning outcomes

On completion of this module, participants will have a basic knowledge of, or will be able to:
 Write effective and efficient programmes

 Work within a programming interface, e.g. Jupyter Notebooks

 Understand data structures & algorithms

 Use the different functions and libraries

 Troubleshoot and debug code

 Follow software best practices

Module assessments

Module practical: Practical available on the ASLM platform
Module quiz: Assessment questions available on the ASLM platform

Module resources

 PLOS| Article - Best Practices for Scientific Computing
 PLOS | Article - Good enough practices in scientific computing
 SIB-SWISS | GitHub - Training Collection
 The Carpentry | GitHub - Programming with Python
 The Carpentry | GitHub - Analyzing Patient Data
 Sanfoundry | Webpage - Python MCQ (Multiple Choice Questions)
 Javatpoint | Webpage - Python MCQ (Multi Choice Questions)
 Biopython | Webpage - Biopython Tutorial & Cookbook

 GeeksforGeeks | Webpage - Python MCQ (Multiple Choice Questions) with Answers
 Interviewbit | Webpage - Python MCQs With Answers

4

https://www.interviewbit.com/python-mcq/
https://www.geeksforgeeks.org/python-multiple-choice-questions/
http://biopython.org/DIST/docs/tutorial/Tutorial.html
https://www.javatpoint.com/python-mcq
https://www.sanfoundry.com/1000-python-questions-answers/
https://swcarpentry.github.io/python-novice-inflammation/02-numpy.html
https://swcarpentry.github.io/python-novice-inflammation/key-points.html
https://github.com/sib-swiss/training-collection#python
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
https://academy.aslm.org/login/index.php
https://academy.aslm.org/login/index.php

Bioinformatics Foundational Course Module B04: Introduction to Programming

Acknowledgements

We would like to thank the following individuals, in alphabetical order of last name, for their valuable time and
effort spent in designing (i.e., drafting, reviewing, and refining) this module: Hocine Bendou, George
Githinji, John Juma, Shahiid Kiyaga, Perceval Maturure, Kennedy Mwai, Nicola Mulder and Verena
Ras.

Furthermore, we would like to thank the following institutions, societies, journals and individuals from whom
we sourced open-access resources, used in this module:
Biopython, Geeks for Geeks, Interviewbit, Javatpoint, Public Library of Science, Sanfoundry, The Carpentry;
Silvano Aldà, Dhavide Aruliah, Jennifer Bryan, Charles Brown, Neil Chue Hong, Karen Cranston, Matt Davis,
Iulian Dragan, Vincent Emonet, Robin Engler, Geert van Geest, Richard Guy, Steven Haddock, Kathryn Huff,
Justin Kitzes, Ian Mitchell, Lex Nederbragt, Mark Plumbley, Smoretti, Jarosław Surkont, Tracy Teal, Ben
Waugh, Ethan White, Greg Wilson, Paul Wilson, Vioannid.

5

		Suggested or approximate number of sessions

		5-6

		Suggested or approximate total learning time

		20-24 hours (practice required)

		Target audience

		Bioinformaticians

		Delivery format

		Lectures, videos, practicals with data examples, code review sessions

		Level of the module

		Introductory to Intermediate

		

		

		Contributors

		

		

		

		

		

		

Hocine Bendou, George Githinji, John Juma, Shahiid Kiyaga, Perceval Maturure, Kennedy Mwai, Nicola Mulder and Verena Ras.

		

		

		Suggested prerequisite module(s)

		

		

		

		

		

		

		Module B01. Introduction to Unix/Linux, Command Line, and Shell Scripting

		Module B02. Introduction to Version Control

		

		

		Module description

		

		

		

		

		

		

Programming tasks include developing new algorithms, managing and analyzing large volumes of data generated in research projects, integrating diverse datasets to tackle complex problems, and performing other computational tasks essential to scientific endeavors. This module aims to assist novice programmers in writing modular code for data analysis. The module recommends teaching language-agnostic programming principles, but examples can be introduced using different programming languages, such as Bash, Python, or R. These principles include automation with loops and encapsulation with functions, as well as best practices for scientific software development. These practices are rooted in extensive research and practical experience and aim to enhance scientists' productivity and the reliability of their software. In this module, participants are also introduced to the following topics and/or concepts:

		Basic data types such as integers, strings, and floating-point numbers

		Using variables -value to assign a value to a variable in order to record it in memory. Variables are created on demand whenever a value is assigned to them.

		Data structures & algorithms

		Control flow/conditionals and loops e.g if, elif, else statements and loop or while loops

		Introduction to a programming interfaces, e.g an IDE or a Jupyter Notebooks

		Debugging and troubleshooting

		Using print(something) to display the value of something.

		Using # to provide some kind of explanation or to add comments to programs.

		Built-in functions

		Reading and writing I/O text files

		Working with modules for data science and visualization, including Numpy, Pandas, and Matplotlib.

		Writing scripts and introducing the concept of object-oriented programming.

		Introducing Biopython using real genomics data.

		How to find, load, and run Biopython modules.

		Parallelizing code

		Work with AI-generated code

		

		

		Summary of best practices to teach trainees

		

		

		

		

		

		

		Write programs for people, not computers.

		A program should not require its readers to hold more than a handful of facts in memory at once.

		Make names consistent, distinctive, and meaningful.

		Make code style and formatting consistent.

		Let the computer do the work.

		Make the computer repeat tasks.

		Save recent commands in a file for re-use.

		Use a build tool to automate workflows.

		Make incremental changes.

		Work in small steps with frequent feedback and course correction.

		Use a version control system.

		Put everything that has been created manually in version control.

		Don't repeat yourself (or others).

		Every piece of data must have a single authoritative representation in the system.

		Modularize code rather than copying and pasting.

		Re-use code instead of rewriting it. Plan for mistakes.

		Add assertions to programs to check their operation.

		Use an off-the-shelf unit testing library.

		Turn bugs into test cases. Use a symbolic debugger.

		Optimize software only after it works correctly.

		Use a profiler to identify bottlenecks.

		Write code in the highest-level language possible.

		Document design and purpose, not mechanics.

		Document interfaces and reasons, not implementations.

		Refactor code in preference to explaining how it works.

		Embed the documentation for a piece of software in that software.

		Collaborate. Use pre-merge code reviews.

		Use pair programming when bringing someone new up to speed and when tackling particularly tricky problems. Use an issue-tracking tool.

		

		

		Module learning outcomes

		

		

		

		

		

		

On completion of this module, participants will have a basic knowledge of, or will be able to:

		Write effective and efficient programmes

		Work within a programming interface, e.g. Jupyter Notebooks

		Understand data structures & algorithms

		Use the different functions and libraries

		Troubleshoot and debug code

		Follow software best practices

		

		

		Module assessments

		

		

		

		

		

		

Module practical: Practical available on the ASLM platform

Module quiz: Assessment questions available on the ASLM platform

		

		

		Module resources

		

		

		

		

		

		

		PLOS| Article - Best Practices for Scientific Computing

		PLOS | Article - Good enough practices in scientific computing

		SIB-SWISS | GitHub - Training Collection

		The Carpentry | GitHub - Programming with Python

		The Carpentry | GitHub - Analyzing Patient Data

		Sanfoundry | Webpage - Python MCQ (Multiple Choice Questions)

		Javatpoint | Webpage - Python MCQ (Multi Choice Questions)

		Biopython | Webpage - Biopython Tutorial & Cookbook

		GeeksforGeeks | Webpage - Python MCQ (Multiple Choice Questions) with Answers

		Interviewbit | Webpage - Python MCQs With Answers

		

		

		Acknowledgements

		

		

		

		

		

		

We would like to thank the following individuals, in alphabetical order of last name, for their valuable time and effort spent in designing (i.e., drafting, reviewing, and refining) this module: Hocine Bendou, George Githinji, John Juma, Shahiid Kiyaga, Perceval Maturure, Kennedy Mwai, Nicola Mulder and Verena Ras.

Furthermore, we would like to thank the following institutions, societies, journals and individuals from whom we sourced open-access resources, used in this module:

Biopython, Geeks for Geeks, Interviewbit, Javatpoint, Public Library of Science, Sanfoundry, The Carpentry; Silvano Aldà, Dhavide Aruliah, Jennifer Bryan, Charles Brown, Neil Chue Hong, Karen Cranston, Matt Davis, Iulian Dragan, Vincent Emonet, Robin Engler, Geert van Geest, Richard Guy, Steven Haddock, Kathryn Huff, Justin Kitzes, Ian Mitchell, Lex Nederbragt, Mark Plumbley, Smoretti, Jarosław Surkont, Tracy Teal, Ben Waugh, Ethan White, Greg Wilson, Paul Wilson, Vioannid.

Bioinformatics Foundational Course Module B04: Introduction to Programming

		

		

		

		

		

		

		Module

		

		

		

Introduction to Programming

		

		

		

		

		

		B04

		

		

		

		

		

		

		

		

		

		 back to the table of modules

		

		

		Module last updated: December 2024

		

		

		

		

		

		

		

Bioinformatics Foundational Course Module B04: Introduction to Programming

Bioinformatics Foundational Course Module B04: Introduction to Programming

