Introduction to containerisation with docker

George Githinji KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya NGS course March 2024

Containerization

A software container is used to encapsulate a software component and the corresponding dependencies

- Sandbox

Containerisation

- A system that allows multiple isolated operating systems to run inside a larger, host system.
- The most basic type of containerization is chroot, which runs an application in a *jail* where it cannot see or access anything outside of its jail
- The most popular container technologies are Docker and Singularity

Docker

- An open platform for developing, shipping, and running applications.
- Docker separates your applications from your infrastructure

	CONTAINER				
Арр А	Арр В	Арр С			
Bins/Libs	Bins/Libs	Bins/Libs			
Docker					
Host OS					
Infrastructure					

What are the benefits?

- Isolation
- Efficiency
- Scalability
- Portablity
- Resource utilization
- Version control and Rollbacks
- Security
- Cost-effectiveness

Use-cases

- Analysis pipelines with many runtime tools (Python, Perl, etc) and many packages (Minimap, Samtools, GATK)
 - Snakemake, NextFlow,
- Web applications that need proxy server, databases and application code within a consitent operating environment
 - Galaxy.,

Docker or Virtual machines?

- Virtual are not lightweight
- Virtual machines package the entire guest OS.
- Docker uses the host kernel and a minimal OS that can be shared between containers

Terminology

- Image a lightweight, stand-alone, executable package of a piece of software that includes everything needed to run it: code, runtime, system tools, system libraries, settings
- Container A running image
- Several containers can run the same image
- Host the machine running docker on which images and containers are stored and running

Installing docker

Instructions to get started with docker

https://docs.docker.com/get-docker/

Docker hub is a registry for docker containers

https://hub.docker.com/

Running docker

• To run a **container**, you specify the **image** name to docker run command – docker will **pull** the image from **dockerhub**.

docker run image-name

→ ~ docker run hello-world

Docker hub

• A cloud registry of images

https://hub.docker.com/

https://biocontainers.pro/

BioContainers Flow

Main Components

Registry

Specifications

Exercise 1: https://hub.docker.com/

Search for the best image for nextclade

→ ~ docker pull nextstrain/nextclade
Using default tag: latest
latest: Pulling from nextstrain/nextclade
Ø9e2bc8a597c: Pull complete
b3efbaa9bac1: Pull complete
9f669c487a27: Pull complete
Digest: sha256:2c2bd89cb129448d8ae4f196c390508819720e83f5856384919d3d2c59151130
Status: Downloaded newer image for nextstrain/nextclade:latest
docker.io/nextstrain/nextclade:latest

What's Next? View a summary of image vulnerabilities and recommendations → docker scout quickview nextstr ain/nextclade

Listing images

docker images

→ ~ docker images				
REPOSITORY	TAG	IMAGE ID	CREATED	SIZE
nextstrain/nextclade	latest	c4e92a7ddab7	14 hours ago	147MB
nginx	latest	760b7cbba31e	2 weeks ago	192MB
ubuntu	latest	a50ab9f16797	3 weeks ago	69.2MB
alpine	latest	ace17d5d883e	5 weeks ago	7.73MB
hello-world	latest	ee301c921b8a	10 months ago	9.14kB

Docker run

Docker run [options] <image name> [image argurments]

Detached mode

Containers can run in the background, for example docker run -d alpine

Docker prints out the ID of the container, so that you can access it later

Exercise: Run galaxy

- The image is called bgruening/galaxy-stable
- The galaxy image listens on port 80 inside the container
- Run the container in the background

docker run -d -p 80:80 bgruening/galaxy-stable

Port mapping

- Docker containers are free to listen on whatever ports to want to, for example port 80/443 for web requests
- However, these ports are not available on the host machine unless you use docker run -p host:container <IMAGE NAME>
- This command means "map port 8080 inside this container to port 80 on the host machine

docker run -p 80:8080 <IMAGE NAME>

 Note that the host port and container port can be the same, and this is quite common

http://localhost:80

Listing running containers

List all running containers docker ps

List terminated containers docker ps -a

The IDs that are shown can be useful for other docker commands like docker stop and docker exec

Docker stop

- Ordinarily, you can press ctrl+c to stop a container currently running in your terminal
- However, if the container is running in the background (with -d), or refuses to close, you can use docker stop

docker stop <CONTAINER ID>

- Use docker stop if you to close the currently running Galaxy Docker container
- Hint: use docker ps if you've forgotten the container's ID

Volumes and Bind Mounts

- By default, Docker containers cannot access data on the host system. This means
 - You can't use host data in your containers
 - All data stored in the container will be lost when the container exits
- You can solve this in two ways:
 - -v /path/in/host:/path/in/container: This bind mounts a host file or directory into the container. Writes to one will affect the other. Note that both paths have to be absolute paths, so you often want to use`pwd`/some/path
 - -v volume_name:/path/in/container. This mounts a named volume into the container, which will live separately from the rest of your files. This is preferred, unless you need to access or edit the files from the host

Exercise

- you need to store the logs for your Galaxy image on your host system using a bind mount
- The Galaxy container stores its logs in /home/galaxy/logs
- What command do you run?
- *Hint: You will want to run the container in detached mode*
- Once you have done this, Is the directory you mounted into the container to verify that you have the logs

docker run -d -p 80:80 -v `pwd`/galaxy_logs:/home/galaxy/logs bgruening/galaxystable

Running command insider a container

• You can run a command inside a running container using: docker exec <CONTAINER ID> <COMMAND>

• For example:

docker exec bd2ac6cce96f ls

• You can also run an interactive bash session inside the container with: docker exec -it bd2ac6cce96f bash

Start another Galaxy container using:

docker run -d -p 80:80 bgruening/galaxy-stable

Make a quick edit to the Galaxy homepage, which is located at /etc/galaxy/web/welcome.html

Edit the welcome message in some way, save the file, and then check to see if your changes worked on the website

Re-open the webpage in separate window or browser to get it to refresh

docker ps to find the container ID

docker exec -it <CONTAINER ID> bash

Now, run nano /etc/galaxy/web/welcome.html (or vim!) and save the file

Summary

docker [-d] [-p host:container] [-v /host/path:/container/path] run <IMAGE NAME> runs a Docker image

docker images - displays all installed images

docker ps [-a] - displays all containers on the system

docker exec <CONTAINER ID> <COMMAND> - lets you run a command inside a running container

docker stop <CONTAINER ID> - stops a running container

Workflows

