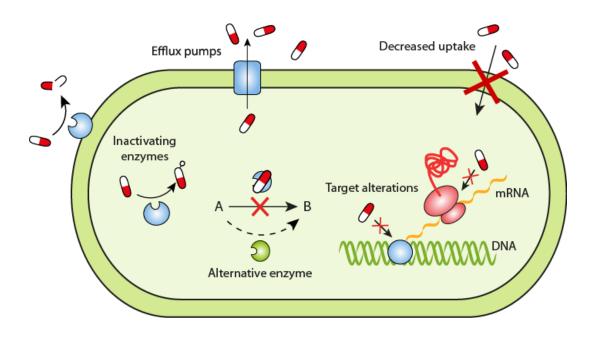
Theory and use of bioinformatics tools to detect AMR genes from genomes

Michael Feldgarden


pd-help@ncbi.nlm.nih.gov

Why Use These Tools (Align Your Tools with Your Goals)

- Applied uses:
 - Surveillance
 - Often focuses on 'good' genes with strong evidence that are known to have an effect
 - Clinical use
 - Edge cases/errors are...bad
- Research:
 - Gene discovery
 - Might want to cast a wider, less precise net
- Understand the goals of the tool(s) you are using

Mechanisms of Antibiotic Resistance

- Point mutations (and small insertions/deletions)
- Acquired genes
- Gene disruption (e.g., IS element insertion)

https://www.reactgroup.org/toolbox/understand/antibiotic-resistance/resistance-mechanisms-in-bacteria/

Features of Different Tools: Reads vs. assemblies

- Assemblies
 - Assemblers (and annotation tools) can affect results
 - Draft assemblies can 'squash' close variants
- Reads
 - 'Mediocre' data can be a problem, especially with allelic variants
 - Need to understand how reads are processed, mapped to references
 - Lack of positional information (where is the gene?)

Features of Different Tools: Nucleotide databases vs. amino acid databases

- Amino acid describes function
- Nucleotide-based analyses can be faster, but sometimes inaccurate at fine scale
- Many are hybrid (e.g., point mutations of 23S and protein detection)

How Are Genes Detected: BLAST, kmers, and HMMs

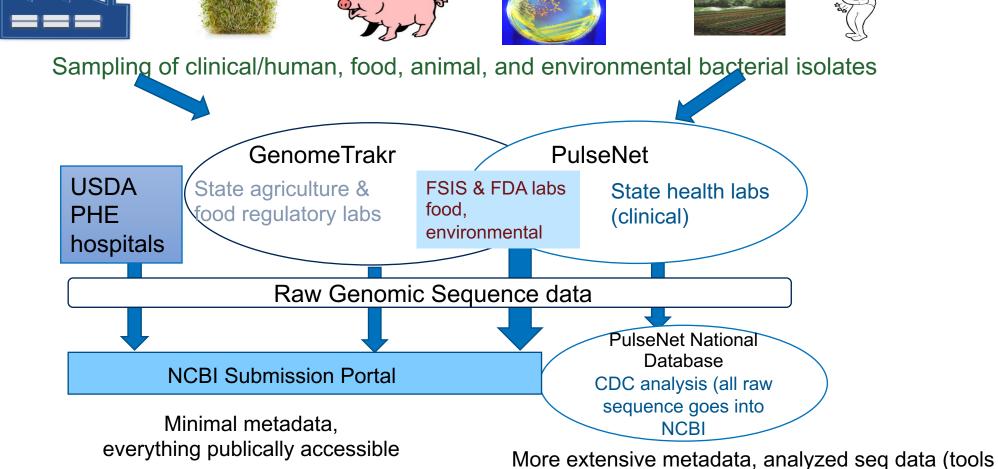
- BLAST (and similar methods)
 - Straightforward to implement
 - Easy to understand how it works
 - Nucleotide-based methods
- K-mers
 - Speed—can search large read sets such as microbiome data
 - Usually mechanism-agnostic (for good and bad)
 - Often tied into phenotype prediction
- Hidden Markov Models (HMMs)
 - Alignments of known proteins are used to build HMMs that identify conserved domains of structure and function
 - Typically use protein sequence for speed/computational reasons
 - Based on biological structure, not arbitrary identity thresholds
- Manually curated cutoffs/rules versus One Rule to Bind Them All

Features of Different Tools: What is reported

- What is reported: closest hit vs. best estimate identification
 - E.g., 99% identical to KPC-2 is not KPC-2
 - KPC-2: carbapenemase
 - KPC-33: inhibitor-resistant cephalosporinase (1 nt change from KPC-2)
 - KPC-8: inhibitor-resistant carbapenemase (2 nt changes from KPC-2)
 - Multiple 'unknown' KPC proteins: unknown phenotype
- Point mutation detection
- 'Broken gene' detection (frameshifts, partials, stop codons)
 - Important for porin-based mechanisms
- Descriptions of genes
- Online tools (GUIs)

Things to Look for in a Database

- Is it regularly curated/updated?
- What are the inclusion criteria for genes (and point mutations)?
 - Are only full-length genes included?
 - important for identifying best hit
 - Are start sites are curated?
 - attC sites are removed
 - leader peptides verified
- How are gene symbols reported? (hARMonization)
- Are there links to the literature?
- Are possible phenotypes reported?
- Unfortunately, it's hard to know these things!!


The Big Caveat

- For some organisms, there is a high correlation between genotypephenotype
 - Campylobacter, Salmonella, and E. coli, Feldgarden et al., 2019, AAC)
 - 98.4% consistency (more recent analysis suggests >99.7%)
- For others...not so much:
 - Khaledi et al. 2020, EMBO
 - Used machine learning and gene expression, still only ~0.9 for some drugs in *P. aeruginosa*
- Gene expression matters (in some organisms, for some drugs, sometimes) and current tools do not address this*

Common Tools

- ResFinder 4 (CGE)
 - Can use assemblies or reads
 - Nucleotide vs. nucleotide BLAST-based
 - A single identity and a single length threshold
 - Fast
 - Can misassign alleles as closest amino acid hit is not necessarily the closest nucleotide hit
 - Online GUI
- RGI (CARD)
 - Protein database
 - Option for broadening scope to identify novel mechanisms; emphasis on efflux
 - Will accept nucleotide sequence or protein sequence
 - BLAST-based but manual cutoffs
 - Online GUI and ontology
- AMRFinderPlus (NCBI)
 - Protein database
 - Will accept nucleotide sequence or protein sequence
 - Uses BLAST and HMMs to identify AMR genes
 - Manually curated BLAST and HMM cutoffs
 - Explicit partial and internal stop identification
 - No online GUI (but data for >780,000 isolates are available in MicroBIGG-E)

Real time surveillance of pathogens for outbreak detection and investigation

to translate) data shared among PulseNet labs only

Large Scale Requires Concise Information

- hundreds of genomes per day
- can't be 'artisanal'; flipping through multiple columns/rows/tables will not work
- Need concise, discrete signifier that conveys appropriate information about genotype (and possibly phenotype)
- That signifier is the gene symbol
 - E.g., 99% identical to KPC-2 is *not* KPC-2
 - KPC-2: carbapenemase
 - KPC-33: inhibitor-resistant cephalosporinase (1 nt change from KPC-2)
 - KPC-8: inhibitor-resistant carbapenemase (2 nt changes from KPC-2)
 - Multiple 'unknown' KPC proteins: unknown phenotype

AMRFinderPlus Uses a Curated Database, HMMs and BLAST to Identify AMR genes

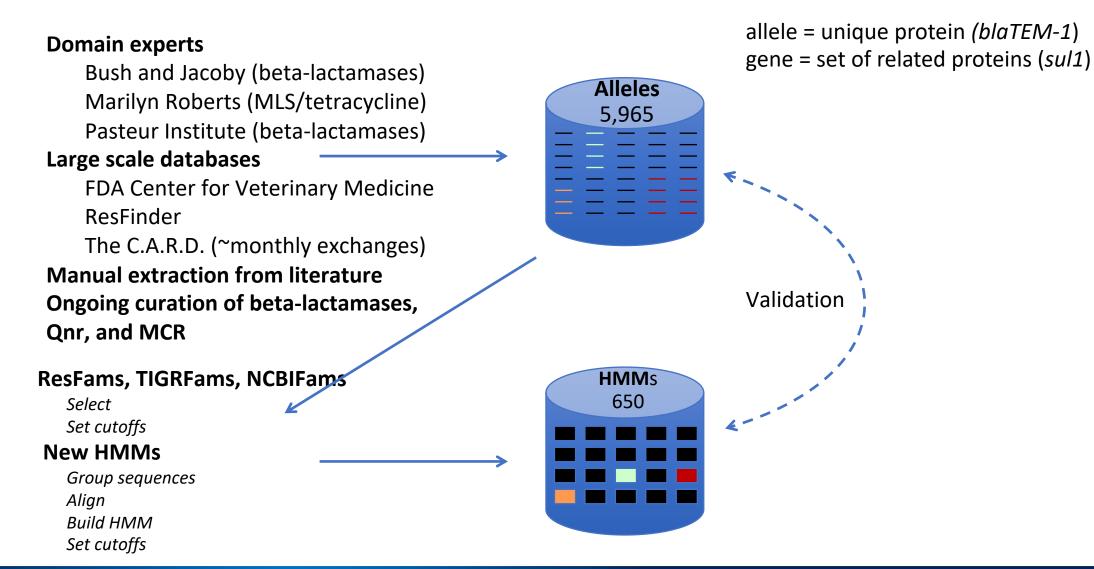
Available at: https://github.com/ncbi/amr/wiki

"Plus" contains:
716 virulence factors
233 acid, biocide, metal, and
heat resistant genes
Optional for users

Proteins
Nucleotide

HMMs
and
BLAST

AMR
database


5,965 resistance proteins
650 HMMs
44 drug classes resisted
~60% beta-lactamases

Report on resistance genes
- integrated into Pathogen
Detection Isolate Browser for >952,000 pathogen isolates

AMRFinderPlus now finds point mutations!

914 resistance mutations for fifteen taxa including Campylobacter, E. coli, and Salmonella

Building an AMR Database

AMRFinderPlus Has a Hierarchical Structure

Similarity to **Functional determination** Protein name known allele Resistance to carbapenems and other 100 % KPC-2 beta-lactam antibiotics. Assign by **BLAST** Epidemiological marker. HMM score > cutoff of KPC. *Likely* 98 % **KPC** family resistance to carbapenems and Assign by **HMM** other beta-lactam antibiotics. HMM score > cutoff. 75% class A beta-Class A beta-lactamase of unknown lactamase Assign by **HMM** specificity. **HMM scores < cutoff** prevents (irrelevant) 23 % false-positive identification as a beta-lactamase. Not reported.

Large Scale Requires Concise Information

- hundreds of genomes per day
- can't be 'artisanal'; flipping through multiple columns/rows/tables will not work
- Need concise, discrete signifier that conveys appropriate information about genotype (and possibly phenotype)
- That signifier is the gene symbol

The Utility of HMMs: 'Beta-lactamases' in GenBank

- Examined **GenBank** protein sequences that had 'beta-lactamase' in product name and not described as partial or synthetic constructs:
 - Only **11%** of sequences (108,386/1,030,160) appear to be beta-lactamases
 - Only 20% of unique proteins (27,682/137,297) appear to be beta-lactamases
- Examined 21 putative metallo-β-lactamases from metagenomic data that had been functionally characterized:
 - AMRFinder correctly identified the 18 functional metallo-β-lactamases
 - AMRFinder correctly did not call the 3 non-functional proteins as betalactamases

Berglund *et al.* 2017. Identification of 76 novel B1 metallo-β-lactamases through large-scale screening of genomic and metagenomic data. Microbiome 5:134

• Nayfach et al. 2021: used RGI, ResFinder, and AMRFinderPlus to confirm viral beta-lactamases (only ~0.5% of putative beta-lactamases appear to be beta-lactamases)

Using AMRFinderPlus

- Optimal use is with nucleotide sequence, protein sequence, and a .gff file
- The AMRFinderPlus database (Reference Gene Catalog) curation is linked to NCBI's curation of PGAP
 - Proteins will be called the correct length
- Can detect species-specific point mutations and genes
- Optionally, can detect virulence genes and stress response genes
- Easy to install using Bioconda (good for bioinformatics in general)

Using AMRFinderPlus: some command line options

```
Example:
amrfinder --nucleotide /home/feldgard/test.nuc.fa --output
/home/feldgard/test.nuc.tsv
More complex example:
amrfinder --nucleotide /home/feldgard/test.nuc.fa \
                                                       genome sequence
          --protein /home/feldgard/test.protein.fa \ set of annotated proteins
          --gff /home/feldgard/test.gff \
                                                       describes gene location
          --output /home/feldgard/test.nuc.tsv \
                                                       output file
                                                       organism flag (optional)
          --organism Escherichia \
                                                        scope (optional virulence
          --plus
                                                        and stress resistance
```

gene detection)

Two examples:

• The good: *S. enterica* SAMN05201855

```
amrfinder --protein GCA_006697045.2_ASM669704v2_protein.faa\
--nucleotide GCA_006697045.2_ASM669704v2_genomic.fna \
--gff GCA_006697045.2_ASM669704v2_genomic.gff \
--output GCA_006697045.2.tsv \
--organism Salmonella \
--plus
```

https://www.ncbi.nlm.nih.gov/biosample/SAMN05201855

The bad: P. aeruginosa SAMN17616831

```
amrfinder --protein GCA_016905405.1_ASM1690540v1_protein.faa \
--nucleotide GCA_016905405.1_ASM1690540v1_genomic.fna \
--gff GCA_016905405.1_ASM1690540v1_genomic.gff \
--output GCA_016905405.1.tsv \
--organism Pseudomonas_aeruginosa \
--plus
```

https://www.ncbi.nlm.nih.gov/pathogens/isolates/#SAMN17616831

S. enterica SAMN05201855

Resistance phenotype	AMR genes
ampicillin	blaTEM-1
gentamicin	aac(3)-IId
tetracycline	tet(A), tet(B)

No resistance genes found that confer resistance to 11 susceptible phenotypes. (also 1 streptomycin resistance gene, though streptomycin was not tested)

P. aeruginosa SAMN17616831

Resistance phenotype	AMR genes
amikacin	????
aztreonam	blaGES-2
cefepime	blaGES-2
ceftolozane-tazobactam	???
ciprofloxacin	gyrA_T83I, parC_S87L
gentamicin	aac(3)-I, aac(6')-Ib4
imipenem-relebactam	????
imipenem	blaGES-2
levofloxacin	gyrA_T83I, parC_S87L
meropenem-vaborbactam	????
meropenem	blaGES-2
piperacillin-tazobactam	blaGES-2
tobramycin	????

- Multiple missing mechanisms
- Could be efflux
- AMRFinderPlus screens for these resistance mechanisms, but could be novel mechanisms

Conclusions

- Prediction can be very accurate for some organisms
 - E.g., most Enterobacterales (Feldgarden et al., 2019)
- Some bug-drug combinations are challenging
 - New phenotypes often are inadequately understood
 - Porins (the broken gene problem)
- Pseudomonas and Acinetobacter are hard
 - Khaledi et al. 2020, EMBO
 - Used machine learning and gene expression, still only ~0.9 for some drugs in *P. aeruginosa*
- Use the appropriate tool for your needs
 - Methods matter
 - Database quality matters
 - What output do you need?

NCBI Resources

AMRFinderPlus:

https://github.com/ncbi/amr/wiki

Reference HMM Catalog:

https://www.ncbi.nlm.nih.gov/pathogens/hmm/

Reference Gene Catalog

https://www.ncbi.nlm.nih.gov/pathogens/isolates/refgene/

Isolate Browser:

https://www.ncbi.nlm.nih.gov/pathogens/isolates

MicroBIGG-E

https://www.ncbi.nlm.nih.gov/pathogens/microbigge/

https://www.ncbi.nlm.nih.gov/pathogens/genehierarchy/

Questions: pd-help@ncbi.nlm.nih.gov

Acknowledgements

Richa Agarwala Victor Ananiev Azat Badretdin Slava Brover

Joshua Cherry

Jinna Choi

Vyacheslav Chetvernin

Robert Cohen Michael DiCuccio

Boris Fedorov

Michael Feldgarden

Lewis Geer Renata Geer

Dan Haft

Lianyi Han Avi Kimchi

Michel Kimelman

William Klimke

Alex Kotliarov

Valerii Lashmanov Aleksandr Morgulis

Eyal Moses

Chris O'Sullivan

Arjun Prasad

Edward Rice

Kirill Rotmistrovskyy Alejandro A. Schaffer

Nadya Serova Stephen Sherry Sergey Shiryev

Martin Shumway

Oleg Shutov Douglas Slotta

Alexandre Souvorov

Tatiana Tatusova

Francoise Thibaud-Nissen

Igor Tolstoy Lukas Wagner Hlavina Wratko Chunlin Xiao

Alexander Zasypkin Eugene Yaschenko Mingzhang Yang

David Lipman James Ostell Kim Pruitt CDC

FDA/CFSAN

GenFS

USDA-FSIS

PHE/FERA

NARMS

NIHGRI

NIAID

WRAIR

Broad

Wadsworth/MDH

Vendors: PacBio, Illumina, Roche

pd-help@ncbi.nlm.nih.gov

This research was supported by the Intramural Research Program of the NIH, National Library of Medicine. http://www.ncbi.nlm.nih.gov
National Center for Biotechnology Information – National Library of Medicine – Bethesda MD 20892 USA

Features of Different Tools

- Reads vs. assemblies
 - Assemblies
 - Assemblers (and annotation tools) can affect results
 - Assemblies can 'squash' close variants
 - Reads
 - 'Mediocre' data can be a problem, especially with 'allelic' variants
 - Need to understand how reads are processed, mapped to references
 - Lack of positional information (where is the gene?)
- Nucleotide databases vs. amino acid databases
 - Amino acid describes function
 - Nucleotide-based analyses can be faster, but sometimes inaccurate at fine scale
- What is reported: closest hit vs. best estimate identification
 - E.g., 99% identical to KPC-2 is not KPC-2
- Point mutation detection
- 'Broken gene' detection (frameshifts, partials, stop codons)

Features of Different Tools

- BLAST, kmers, and HMMs
 - BLAST (and similar methods)
 - Straightforward to implement
 - Easy to understand how it works
 - Nucleotide-based methods
 - K-mers
 - Speed
 - Usually mechanism-agnostic (for good and bad)
 - Often tied into phenotype prediction
 - Hidden Markov Models (HMMs)
 - Alignments of known proteins are used to build HMMs that identify conserved domains of structure and function
 - Typically use protein sequence for speed/computational reasons
 - Based on biological structure, not arbitrary identity thresholds
- Manually curated cutoffs/rules versus One Rule to Bind Them All
- Descriptions of genes
- Online tools (GUIs)